[1] United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision [EB/OL]. (2018-12-19) [2022-08-01]. https://popu-lation.un.org/wup/ [2] Chen J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena, 2007, 69: 1-15 [3] 吴文, 修春亮, 胡远满, 等. 城市景观格局对土壤动物多样性的影响研究进展. 生态学杂志, 2018, 37(7): 2199-2204 [4] 苏泳娴, 黄光庆, 陈修治, 等. 城市绿地的生态环境效应研究进展. 生态学报, 2011, 31(23): 302-315 [5] Bardgett RD,van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515: 505-511 [6] 彭彩云, 田惠, 肖玖金, 等. 城市不同类型绿地土壤动物群落特征. 云南农业大学学报: 自然科学版, 2018, 33(4): 1-8 [7] Bossio DA, Fleck JA, Scow KM, et al. Alteration of soil microbial communities and water quality in restored wetlands. Soil Biology & Biochemistry, 2006, 38: 1223-1233 [8] 李彦霈, 邵明安, 王娇. 蚯蚓粪覆盖对土壤水分蒸发过程的影响. 土壤学报, 2018, 55(3): 633-640 [9] 潘菲, 张燕林, 黄彩凤, 等. 森林土壤动物生态功能研究进展. 世界林业研究, 2020, 33(2): 37-42 [10] 傅声雷. 土壤生物多样性的研究概况与发展趋势. 生物多样性, 2007, 15(2): 109-115 [11] 王邵军, 阮宏华, 汪家社, 等. 武夷山典型植被类型土壤动物群落的结构特征. 生态学报, 2010, 30(19): 5174-5184 [12] 南昌市统计局. 南昌市第七次全国人口普查结果主要特点[EB/OL]. (2021-06-02) [2022-02-03]. http://tjj.nc.gov.cn/ncstjj/tjgb/nav_list.shtml [13] 万一帆, 刘卫林, 刘丽娜, 等. 南昌市城市化进程对极端降水的影响. 水力发电, 2020, 46(8): 27-31 [14] 魏宸, 黄虹, 邹长伟, 等. 南昌市新城区大气降水化学特征与主要成分来源解析. 环境科学研究, 2016, 29(11): 1582-1589 [15] 傅春, 陈先明. 城市化对南昌市降雨变化的影响研究. 长江流域资源与环境, 2015, 24(4): 705-710 [16] 阳海鸥, 廖玲莉, 冷清明. 江西省城市化与大气颗粒物污染的时空特征及耦合协调关系. 长江流域资源与环境, 2022, 31(4): 890-902 [17] 刘雅, 黄庭, 谢哲宇, 等. 南昌市城市化与大气环境耦合协调关系研究. 安全与环境工程, 2020, 27(2): 1-7 [18] 魏宸, 黄虹, 邹长伟, 等. 南昌市新城区大气降水化学特征与主要成分来源解析. 环境科学研究, 2016, 29(11): 1582-1589 [19] 袁菊红. 南昌城市道路绿地植物景观调查与分析. 北方园艺, 2014(10): 71-76 [20] 李佩擎, 方向民, 陈伏生, 等. 南昌城乡梯度绿地土壤水溶性有机碳变异及其对温度的响应特征. 应用生态学报, 2015, 26(11): 3398-3404 [21] Jin TT, Liu W, Wang Y, et al. Effects of urbanization intensity on glomalin-related soil protein in Nanchang, China: Influencing factors and implications for green-space soil improvement. Journal of Environmental Mana-gement, 2022, 318: 115611 [22] 陈伏生. 城乡梯度森林生态过程研究. 北京: 中国林业出版社, 2013 [23] Liu W, Zhang J, Norris SL, et al. Impact of grassland reseeding, herbicide spraying and ploughing on diversity and abundance of soil arthropods. Frontiers in Plant Science, 2016, 7: 1200 [24] 尹文英. 中国土壤动物检索图鉴. 北京: 科学出版社, 1998 [25] Crotty FV, Blackshaw RP, Adl SM, et al. Divergence of feeding channels within the soil food web determined by ecosystem type. Ecology and Evolution, 2014, 4: 1-13 [26] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000 [27] 刘长海, 赵桂玲, 曹四平. 延安新区城市生态林中大型土壤动物多样性组成结构特征. 西北林学院学报, 2016, 31(5): 198-202 [28] 辛未冬, 刘华煜, 杨轶萌, 等. 复垦对煤矸石山地表节肢动物群落特征的影响. 生态学杂志, 2021, 40(7): 2213-2222 [29] Osler G, Harrison L, Kanashiro DK, et al. Soil microarthropod assemblages under different arable crop rotations in Alberta, Canada. Applied Soil Ecology, 2008, 38: 71-78 [30] 林英华, 刘海良, 张夫道, 等. 江西大岗山杉木凋落层土壤动物群落动态及多样性. 林业科学研究, 2007, 20(5): 609-614 [31] 廖丽琴, 刘苑秋, 孔凡前, 等. 庐山冬季土壤动物群落及功能群对毛竹扩张的响应. 江西农业大学学报, 2017, 39(4): 721-730 [32] 黄玉梅. 土壤动物群落多样性研究进展. 西部林业科学, 2004, 33(3): 63-68 [33] Chauvat M, Wolters ZV. Successional changes of Collembola and soil microbiota during forest rotation. Oecologia, 2003, 137: 269-276 [34] 唐静, 袁访, 宋理洪. 施用生物炭对土壤动物群落的影响研究进展. 应用生态学报, 2020, 31(7): 2473-2480 [35] Skalski T, PosPiech N. Beetles community structures under different reclamation practices. European Journal of Soil Biology, 2006, 42: S316-S320 [36] Siepel H. Niche relationships between two panphytophagous soil mites, Nothrus silvestris Nicolet (Acari, Oribatida, Nothridae) and Platynothrus peltifer (Koch) (Acari, Oribatida, Camisiidae). Biology and Fertility of Soils, 1990, 9: 139-144 [37] Behan-Pelletier VM, Kanashiro D. Acari in grassland soils of Canada// Shorthouse JD, Floate KD, eds. Arthropods of Canadian Grasslands (Volume 1): Ecology and Interactions in Grassland Habitats. Ottawa, Ontario: Biological Survey of Canada, 2010: 137-166 [38] 晋秀龙, 陆林, 巩劼, 等. 游憩活动对赭山风景区大型土壤动物群落的影响. 自然资源学报, 2009, 24(4): 691-699 [39] 王立龙, 陆林. 旅游干扰对太平湖国家湿地公园土壤酶活性及大型土壤动物分布的影响. 湿地科学, 2013, 11(2): 212-218 [40] 陈利顶, 徐建英, 傅伯杰, 等. 斑块边缘效应的定量评价及其生态学意义. 生态学报, 2004, 24(9): 1827-1832 [41] 田超, 杨新兵, 刘阳. 边缘效应及其对森林生态系统影响的研究进展. 应用生态学报, 2011, 22(8): 2184-2192 [42] Yan X, Sheng L, Neher DA, et al. Subordinate plants sustain the complexity and stability of soil micro-food webs in natural bamboo forest ecosystems. Journal of Applied Ecology, 2016, 53: 130-139 [43] 陈蔚, 黄兴科, 刘任涛, 等. 宁夏荒漠草原植物多样性对地面节肢动物功能群多样性的影响. 草地学报, 2019, 27(6): 1587-1595 [44] Stenbacka F, Hjältén J, Hilszczański J, et al. Saproxy-lic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecological Applications, 2010, 20: 2310-2321 [45] Sala J, Nebra A, Quintana XD, et al. Environmental filtering determines metacommunity structure in wetland microcrustaceans. Oecologia, 2016, 181: 193-205 [46] Scheu S. The soil food web: Structure and perspectives. European Journal of Soil Biology, 2002, 38: 11-20 [47] 白燕娇, 刘任涛, 常海涛, 等. 干旱绿洲区不同生长年限枸杞林地面节肢动物群落分布特征. 生态与农村环境学报, 2021, 37(9): 1190-1199 [48] Anderson RM, Dallar NM, Pirtel NL, et al. Bottom-up and top-down effects of forest fragmentation differ between dietary generalist and specialist caterpillars. Frontiers in Ecology and Evolution, 2019, 7: 452-463 [49] Vasconcellos R, Segat JC, Bonfim JA, et al. Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. European Journal of Soil Biology, 2013, 58: 105-112 [50] 杨光蓉, 豆鹏鹏, 马瑜, 等. 金佛山亚热带常绿阔叶林地表土壤动物群落特征及其影响因素. 生态学报, 2020, 40(21): 7602-7610 [51] Salamún P, Kucanová E, Brázová T, et al. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH. Ecotoxicology, 2014, 23: 1367-1376 [52] 刘鹏飞, 红梅, 常菲, 等. 秸秆还田对黑土区西部农田中小型土壤动物群落的影响. 生态学杂志, 2018, 37(1): 139-146 [53] 秦娟, 许克福. 我国城市绿地土壤质量研究综述与展望. 生态科学, 2018, 37(1): 200-210 [54] Wardle DA, Bardgett RD, Callaway RM, et al. Terrestrial ecosystem responses to species gains and losses. Science, 2011, 332: 1273-1277 [55] Scherber C, Eisenhauer N, Weisser WW, et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 2010, 468: 553-556 [56] 韩慧莹, 殷秀琴, 寇新昌, 等. 长白山地低山区土壤动物群落特征及其对环境因子变化的响应. 生态学报, 2017, 37(7): 2197-2205 [57] 邢树文, 许佳敏, 黄彬, 等. 钨尾矿重金属污染对茶园土壤动物群落结构及多样性的影响. 生态环境学报, 2021, 30(9): 1903-1915 [58] 杨宝玲, 张文文, 范换等. 苏北沿海地区不同土地利用类型下土壤动物群落结构特征. 南京林业大学学报, 2017, 41(6): 120-126 [59] 田娇娇, 蒋璐, 曾珍, 等. 模拟氮沉降初期对柳杉人工林土壤动物群落结构的影响. 四川农业大学学报, 2020, 38(4): 439-448 [60] 靳亚丽, 杨斯琦, 徐珊珊, 等. 上海静安雕塑公园土壤动物群落的垂直分布和季节变化. 生态学杂志, 2021, 40(2): 480-489 [61] 林青霞, 张化永, 黄头生, 等. 冀北山地白桦林中小型土壤动物群落格局. 东北林业大学学报, 2023, 51(2): 97-103 |