[1] Schleser GH, Helle G, Lücke A, et al. Isotope signals as climate proxies: The role of transfer functions in the study of terrestrial archives. Quaternary Science Reviews, 1999, 18: 927-943 [2] O’Leary MH. Carbon isotopes in photosynthesis. BioScience, 1988, 38: 328-336 [3] Terwilliger VJ, Eshetu Z, Colman A, et al. Reconstructing palaeoenvironment from δ13C and δ15N values of soil organic matter: A calibration from arid and wetter elevation transects in Ethiopia. Geoderma, 2008, 147: 197-210 [4] Diefendorf AF, Mueller KE, Wing SL, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 5738-5743 [5] 严昌荣, 韩兴国, 陈灵芝. 六种木本植物水分利用效率和其小生境环境关系研究. 生态学报, 2001, 21(11): 1952-1956 [6] 王玉涛, 李吉跃, 刘平, 等. 不同生活型绿化植物叶片碳同位素组成的季节特征. 植物生态学报, 2010, 34(2): 151-159 [7] Kohn MJ. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 19691-19695 [8] Liu XZ, Su Q, Li CK, et al. Variation in carbon isotope discrimination and photosynthetic gas exchange among populations of Pseudotsuga menziesii and Pinus ponderosa in different environments. Functional Ecology, 1995, 9: 402-412 [9] 李荣平, 周广胜, 张慧玲. 植物物候研究进展. 应用生态学报, 2006, 17(3): 541-544 [10] Sparks TH, Carey PD. The responses of species to climate over two centuries: An analysis of the Marsham phonological record, 1736-1947. Journal of Ecology, 1995, 83: 321-329 [11] 徐雨晴, 陆佩玲, 于强. 近50年北京树木物候对气候变化的响应. 地理研究, 2005, 24(3): 412-420 [12] 杨琪, 李书恒, 李家豪, 等. 西安4种落叶乔木物候期对气候变化的响应. 生态学报, 2022, 42(4): 1462-1473 [13] 北京市园林绿化局. 北京城市森林建设树种选择导则[EB/OL]. (2019-10-21) [2022-04-04]. http://yllhj.beijing.gov.cn [14] 吴旭, 唐亚坤, 陈晨, 等. 黄土丘陵区沙棘、油松和刺槐光合生理特性及其环境适应性. 生态学报, 2019, 39(21): 8111-8125 [15] 曹奇光, 张学培, 牛丽丽, 等. 晋西黄土区人工刺槐林生理生态特点分析与研究. 水土保持研究, 2007, 14(3): 330-335 [16] Gessler A, Rennenberg H, Keitel C. Stable isotope composition of organic compounds transported in the phloem of european beech: Evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport. Plant Biology, 2004, 6: 721-729 [17] 白彩云, 李少昆, 柏军华, 等. 我国东北地区不同生态条件下玉米品种积温需求及利用特征. 应用生态学报, 2011, 22(9): 2337-2342 [18] 陈拓, 秦大河, 何元庆, 等. 祁连圆柏中稳定碳同位素分布特征. 冰川冻土, 2002, 24(5): 571-573 [19] 李明财, 罗天祥, 刘新圣, 等. 高山林线急尖长苞冷杉不同器官的稳定碳同位素组成分布特征. 应用生态学报, 2007, 18(12): 2654-2660 [20] Martinelli LA, Almei DS, Brown IF, et al. Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondnia, Brazil. Oecologia, 1998, 114: 170-179 [21] Eglin T, Fresneau C, Lelarge TC, et al. Leaf and twig δ13C during growth in relation to biochemical composition and respired CO2. Tree Physiology, 2009, 29: 777-788 [22] Badeck FW, Tcherkez G, Nogués S, et al. Post-photosynthetic fractionation of stable carbon isotopes between plant organs: A widespread phenomenon. Rapid Communications in Mass Spectrometry, 2005, 19: 1381-1391 [23] 刘莹, 李鹏, 沈冰. 等. 采用稳定碳同位素法分析白羊草在不同干旱胁迫下的水分利用效率. 生态学报, 2017, 37(9): 3055-3064 [24] 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 2011, 35(12): 1245-1255 [25] Schnyder H, Lattanzi FA. Partitioning respiration of C3-C4 mixed communities using the natural abundance 13C approach: Testing assumptions in a controlled environment. Plant Biology, 2010, 7: 592-600 [26] Gholz HL, Cropper WP. Carbohydrate dynamics in mature Pinus elliotti var. elliotti trees. Canadian Journal of Forest Research, 1991, 21: 1742-1747 [27] 陈拓, 秦大河, 任贾文, 等. 甘肃马衔山平车前叶片δ13C的海拔和时间差异. 西北植物学报, 2000, 20(4): 672-675 [28] Scartazza A, Moscatello S, Matteucci G, et al. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest. Tree Physiology, 2013, 33: 730-742 [29] Damesin C, Lelarge C. Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant, Cell and Environment, 2003, 26: 207-219 [30] Landhäusser SM, Lieffers VJ. Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees, 2012, 26: 653-661 [31] 冯虎元, 安黎哲, 王勋陵. 环境条件对植物稳定碳同位素组成的影响. 植物学通报, 2000, 17(4): 312-318 [32] 赵丹, 程军回, 刘耘华, 等. 荒漠植物梭梭稳定碳同位素组成与环境因子的关系. 生态学报, 2017, 37(8): 2743-2752 [33] 贺玲威, 杨君珑, 李小伟. 沙棘属植物叶片碳稳定同位素含量与气候的关系. 应用生态学报, 2021, 32(3): 819-824 [34] Deniro M, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 1977, 197: 261-263 [35] Farquhar GD, O’Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Austra-lian Journal of Plant Physiology, 1982, 9: 121-137 [36] Francey RJ, Gifford RM, Sharkey TD, et al. Physiological influences on carbon isotope discrimination in Huon pine. Oecologia, 1985, 66: 211-218 [37] 刘德祥, 赵红岩, 董安祥, 等. 气候变暖对甘肃夏秋季作物种植结构的影响. 冰川冻土, 2005, 27(6): 806-812 |