[1] 郭茹, 温仲明, 王红霞, 等. 延河流域植物叶性状间关系及其在不同植被带的表达. 应用生态学报, 2015, 26(12): 3627-3633 [2] Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12: 351-366 [3] 王一峰, 祁如林, 杨亚军, 等. 海拔对青藏高原东缘弯齿风毛菊繁殖特征的影响. 应用生态学报, 2018, 29(1): 68-74 [4] 刘晓娟, 马克平. 植物功能性状研究进展. 中国科学: 生命科学, 2015, 45(4): 325-339 [5] 罗文文, 高琛稀, 张东, 等. 不同海拔环境因子对富士苹果叶片和果实品质的影响. 应用生态学报, 2014, 25(8): 2243-2250 [6] 李芳兰, 包维楷, 刘俊华, 等. 岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究. 应用生态学报, 2006, 17(1): 5-10 [7] 胡启鹏, 郭志华, 孙玲玲, 等. 长白山林线树种岳桦幼树叶功能型性状随海拔梯度的变化. 生态学报, 2013, 33(12): 3594-3601 [8] Peppe DJ, Royer DL, Cariglino B, et al. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytologist, 2011, 190: 724-739 [9] McDonald PG, Fonseca CR, Overton JMC, et al. Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 2003, 17: 50-57 [10] Niinemets Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 2001, 82: 453-469 [11] Long WX, Zang RG, Schamp BS, et al. Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest. Oecologia, 2011, 167: 1103-1113 [12] Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Procee-dings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006 [13] Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 2013, 198: 983-1000 [14] Franks PJ, Farquhar GD. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology, 2007, 143: 78-87 [15] Li Y, Liu CC, Xu L, et al. Leaf trait networks based on global data: Representing variation and adaptation in plants. Frontiers in Plant Science, 2021, 12: 710530 [16] Flores-Moreno H, Fazayeli F, Banerjee A, et al. Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography, 2019, 28: 1806-1826 [17] Liu C, Li Y, Xu L, et al. Variation in leaf morphological, stomatal, and anatomical traitsand their relationships in temperate and subtropical forests. Scientific Reports, 2019, 9: 5803 [18] 李颖. 叶片性状网络在不同植被类型间的变异规律及其影响因素. 博士论文. 北京: 北京林业大学, 2020 [19 ] 张莉, 温仲明, 苗连朋. 延河流域植物功能性状变异来源分析. 生态学报, 2013, 33(20): 6543-6552 [20] 姚兰, 艾训儒, 易咏梅, 等. 星斗山观赏植物交让木种群特征研究. 湖北民族学院学报: 自然科学版, 2015, 33(2): 165-169 [21] 马锦丽, 江洪, 舒海燕, 等. 天目山自然保护区典型阔叶林的光合特性. 福建农林大学学报: 自然科学版, 2016, 45(4): 381-390 [22] 谭一波, 申文辉, 田红灯, 等. 猫儿山不同海拔植物群落树木构型差异及其影响因子. 应用生态学报, 2019, 30(8): 2614-2620 [23] 金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系. 植物生态学报, 2016, 40(7): 702-710 [24] 王瑞丽, 于贵瑞, 何念鹏, 等. 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例. 生态学报, 2016, 36(8): 2175-2184 [25] 韩玲, 赵成章, 徐婷, 等. 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 2016, 40(8): 788-797 [26] He NP, Li Y, Liu CC, et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 2020, 35: 908-918 [27] 史青茹, 许洺山, 赵延涛, 等. 浙江天童木本植物Corner法则的检验: 微地形的影响. 植物生态学报, 2014, 38(7): 665-674 [28] Hultine KR, Marshall JD. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 2000, 123: 32-40 [29] Elser JJ, Fagan WF, Denno RF, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408: 578-580 [30] Hudson JMG, Henry GHR, Cornwell WK. Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biology, 2011, 17: 1013-1021 [31] Okajima Y, Taneda H, Noguchi K, et al. Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecological Research, 2012, 27: 333-346 [32] 祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释. 生态学报, 2007, 27(3): 930-937 [33] 吴杰, 潘红丽, 杜忠, 等. 卧龙竹类非结构性碳水化合物与叶氮含量对海拔的响应. 生态学报, 2010, 30(3): 610-618 [34] 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说. 植物生态学报, 2021, 45(7): 682-713 [35] Reich PB, Ellsworth DS, Walters MB, et al. Generality of leaf trait relationships: A test across six biomes. Eco-logy, 1999, 80: 1955-1969 [36] 白坤栋, 莫凌, 刘铭, 等. 广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式. 生态学报, 2015, 35(17): 5776-5787 [37] Huang ZQ, Ran SS, Fu YR, et al. Functionally dissimilar neighbours increase tree water use efficiency through enhancement of leaf phosphorus concentration. Journal of Ecology, 2022, 110: 2179-2189 [38] 白坤栋, 蒋得斌, 万贤崇. 广西猫儿山不同海拔常绿树种和落叶树种光合速率与氮的关系. 生态学报, 2013, 33(16): 4930-4938 [39] 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 2015, 39(2): 206-216 [40] 杨国慧, 张永和, 高庆玉, 等. 冬季黑穗醋栗叶绿素含量及影响因素的初步研究. 东北农业大学学报, 1996, 27(2): 146-151 [41] McCulloh KA, Sperry JS. Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiology, 2005, 25: 257-267 |