[1] Blackman FF. Optima and limiting factors. Annals of Botany, 1905, 19: 281-295 [2] Baly EC. The kinetics of photosynthesis. Proceedings of the Royal Society of London, 1935, 117: 218-239 [3] Thornley JHM. Mathematical Models in Plant Physiology: A Quantitative Approach to Problems in Plant and Crop Physiology. New York: Academic Press, 1976: 86-110 [4] Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 1980, 38: 687-701 [5] Bassman J, Zwier JC. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus tricho-carpa × P. deltoids clone. Tree Physiology, 1991, 8: 145-159 [6] Prado CHBA, Moraes JAPV. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition. Photosynthetica, 1997, 33: 103-112 [7] Ye ZP. A new model for relationship between irradiance and the rate of photosynthesis in Oryza saliva. Photosynthetica, 2007, 45: 637-640 [8] Chen ZY, Peng ZS, Yang J, et al. A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica, 2011, 49: 467-471 [9] Yang XL, Liu L, Yin ZK, et al. Quantifying photosynthetic performance of phytoplankton based on photosynthesis-irradiance response models. Environmental Sciences Europe, 2020, 32: 24 [10] 韩晓, 王海波, 王孝娣, 等. 基于4种光响应模型模拟不同砧木对夏黑葡萄耐弱光能力的影响. 应用生态学报, 2017, 28(10): 3323-3330 [11] Yang XL, Bi YH, Ma XF, et al. Transcriptomic analysis dissects the regulatory strategy of toxic cyanobacte-rium Microcystis aeruginosa under differential nitrogen forms. Journal of Hazardous Materials, 2022, 428: 128276 [12] 刘泽彬, 程瑞梅, 肖文发, 等. 不同淹水时间下中华蚊母树光响应特征及其模型比较. 应用生态学报, 2015, 26(4): 1083-1090 [13] 王雪, 康敏, 王偲媛, 等. 不同光合-CO2响应模型对水稻快速A-Ci响应(RACiR)曲线拟合效果的比较研究. 南京农业大学学报, 2022, 45(6): 1099-1106 [14] Sun JS, Sun JD, Feng Z. Modelling photosynthesis in flag leaves of winter wheat (Triticum aestivum) consi-dering the variation in photosynthesis parameters during development. Functional Plant Biology, 2015, 42: 1036-1044 [15] 李理渊, 李俊, 同小娟, 等. 不同光环境下栓皮栎和刺槐叶片光合光响应模拟. 应用生态学报, 2018, 29(7): 2295-2306 [16] 段萌, 杨伟才, 毛晓敏. 覆膜条件下水分亏缺对春小麦光合特性影响及光响应模型比较研究. 农业机械学报, 2018, 49(12): 219-227 [17] Xu J, Wang Y, Yang S, et al. Improved performance of photosynthetic light response equations with unified parameters for rice leaves with different SPAD values. Pakistan Journal of Botany, 2015, 47: 877-882 [18] 侯维海, 王建林, 旦巴, 等. 青稞光合作用5种光响应模型的比较分析. 作物杂志, 2017, 9(4): 96-104 [19] 罗紫东, 关华德, 章新平, 等. 枫香叶片衰老过程中光合能力的变化. 应用生态学报, 2016, 27(10): 3129-3136 [20] Ye ZP, Duan SH, Chen XM, et al. Quantifying light response of photosynthesis: Addressing the long-standing limitations of non-rectangular hyperbolic model. Photosynthetica, 2021, 59: 185-191 [21] Müller P, Li XP, Niyogi KK. Non-photochemical quenching: A response to excess light energy. Plant Physiology, 2001, 125: 1558-1566 [22] Ye ZP, Robakowski P, Suggett DJ. A mechanistic mo-del for the light response of photosynthetic electron transportrate based on light harvesting properties of photosynthetic pigment molecules. Planta, 2013, 237: 837-847 [23] Ye ZP, Suggett DJ, Robakowski P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of PSⅡ in C3 and C4 species. New Phytologist, 2013, 199: 110-120 [24] 袁明, 瞿礼嘉, 王小菁, 等. 2013年中国植物科学若干领域重要研究进展. 植物学报, 2014, 49(4): 347-406 [25] 何玉琳, 吴杨, 叶子飘, 等. 油茶叶片捕光色素分子内禀特性和光能利用效率对光照强度的响应. 西北植物学报, 2022, 42(9): 1552-1560 [26] 左官强, 王诗雅, 冯乃杰, 等. 烯效唑对淹水胁迫下大豆光合生理及表型的影响. 生态学杂志, 2019, 38(9): 2702-2708 [27] 胡文海, 肖宜安, 闫小红, 等. 越冬期红叶石楠和桂花防御低温强光伤害的光保护机制. 植物研究, 2021, 41(6): 938-946 [28] Watling JR, Press MC, Quick WP. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiology, 2000, 123: 1143-1152 [29] Xu J, Lv Y, Liu X, et al. A general non-rectangular hyperbola equation for photosynthetic light response curve of rice at various leaf ages. Scientific Reports, 2019, 9: 9909 [30] Poirier-Pocovi M, Lothier J, Buck-Sorlin G. Modelling temporal variation of parameters used in two photosynthesis models: Influence of fruit load and girdling on leaf photosynthesis in fruit-bearing branches of apple. Annals of Botany, 2018, 121: 821-832 [31] Ye ZP, Liu YG, Kang HJ, et al. Comparing two mea-sures of leaf photorespiration rate across a wide range of light intensities. Journal of Plant Physiology, 2019, 240: 153002 [32] Ma X, Liu Q, Zhang Z, et al. Effects of photosynthetic models on the calculation results of photosynthetic response parameters in young Larix principis-rupprechtii Mayr. plantation. PLoS One, 2021, 16(12): e0261683 [33] Buckley TN, Diaz-Espejo A. Reporting estimates of maximum potential electron transport rate. New Phytologist, 2015, 205: 14-17 [34] Han T, Zhu G, Ma J, et al. Sensitivity analysis and estimation using a hierarchical Bayesian method for the parameters of the FvCB biochemical photosynthetic model. Photosynthesis Research, 2020, 143: 45-66 [35] Lobo FDA, Barros MPD, Dalmagro HJ, et al. Fitting net photosynthetic light-response curves with Microsoft Excel: A critical look at the models. Photosynthetica, 2014, 52: 479-480 [36] 冷寒冰, 秦俊, 叶康, 等. 不同光照环境下荷花叶片光合光响应模型比较. 应用生态学报, 2014, 25(10): 2855-2860 [37] Song L, Zhang YJ, Chen X, et al. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest. Journal of Plant Research, 2015, 128: 573-584 [38] 陈根云, 俞冠路, 陈悦, 等. 光合作用对光和二氧化碳响应的观测方法探讨. 植物生理与分子生物学学报, 2006, 32(6): 691-696 [39] Ye ZP, Kang HJ, An T, et al. Modeling light response of electron transport rate and its allocation for ribulose biphosphate carboxylation and oxygenation. Frontiers Plant Science, 2020, 11: 581851 [40] 钱一凡, 廖咏梅, 权秋梅, 等. 4种光响应曲线模型对3种十大功劳属植物的实用性. 植物研究, 2014, 34(5): 716-720 [41] 高平珍, 陈双林, 郭子武, 等. 毛竹林下苦参和决明幼苗光合作用光响应模型比较. 林业科学研究, 2018, 31(2): 156-163 [42] 叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6): 727-740 [43] 叶子飘. 光响应模型在超级杂交稻组合-Ⅱ优明86中的应用. 生态学杂志, 2007, 26(8): 1323-1326 [44] 叶子飘, 杨小龙, 冯关萍. 植物电子传递速率对光响应模型的比较研究. 扬州大学学报: 农业与生命科学版, 2018, 39(1): 97-104 [45] Crous YK, Zaragoza-Castells J, Ellsworth DS, et al. Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought. Plant, Cell & Environment, 2012, 35: 966-981 [46] 顾骏飞, 周振翔, 李志康, 等. 水稻低叶绿素含量突变对光合作用及产量的影响. 作物学报, 2016, 42(4): 551-560 [47] 吕春华, 陈芬, 王伟伟, 等. 干旱胁迫对小叶红叶石楠光合及其他生理作用的影响. 江苏林业科技, 2015, 42(1): 11-15 [48] 周晓瑾, 黄海霞, 张君霞, 等. 盐胁迫对裸果木幼苗光合特性的影响. 草业学报, 2023, 32(2): 75-83 [49] 徐超, 申梦吟, 王明田, 等. 苗期短时高温条件下草莓干物质积累模型的修订. 中国农业气象, 2021, 42(7): 572-582 [50] 贺俐, 贺晓鹏, 边建民, 等. 光合电子流对光响应机理模型在超级晚稻光合特性研究中的应用. 南方农业学报, 2019, 50(9): 1937-1944 [51] 田梦阳, 窦全琴, 谢寅峰, 等. 4个薄壳山核桃品种的光合特性研究. 南京林业大学学报: 自然科学版, 2022, 46(5): 67-74 [52] 张俊, 马迎梅, 王树森, 等. 不同温度条件下沙冬青幼树对土壤失水及复水的生理响应过程. 干旱区资源与环境, 2023, 37(3): 150-161 [53] 胡文海, 叶子飘, 闫小红, 等. 越冬期广玉兰阳生叶和阴生叶PSⅡ功能及捕光色素分子内禀特性的比较研究. 植物研究, 2017, 37(2): 281-287 [54] 叶子飘, 胡文海, 闫小红, 等. 基于光响应机理模型的不同植物光合特性. 生态学杂志, 2016, 35(9): 2544-2552 [55] 杨小苗, 吴新亮, 刘玉凤, 等. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用. 应用生态学报, 2018, 29(6): 1983-1989 [56] Baker NR. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008, 59: 89-113 [57] 叶子飘, 段世华, 安婷, 等. C4作物电子传递速率对CO2响应模型的构建及应用. 植物生态学报, 2019, 42(10): 1000-1008 [58] Robakowski P, Pers-Kamczyc E, Ratajczak E, et al. Photochemistry and antioxidative capacity of female and male Taxus baccata L. acclimated to different nutritional environments. Frontiers in Plant Science, 2018, 9: 742 |