应用生态学报 ›› 2021, Vol. 32 ›› Issue (4): 1498-1508.doi: 10.13287/j.1001-9332.202104.020
吴龙龙1, 田仓1,2, 张露1, 黄晶1, 朱练峰1, 张均华1, 曹小闯1*, 金千瑜1
收稿日期:
2020-11-02
接受日期:
2021-01-26
发布日期:
2021-10-25
通讯作者:
*E-mail: caoxiaochuang@126.com
作者简介:
吴龙龙, 男, 1996年生, 硕士研究生。主要从事稻田养分资源管理研究。E-mail: 13329220426@163.com
基金资助:
WU Long-long1, TIAN Cang1,2, ZHANG Lu1, HUANG Jing1, ZHU Lian-feng1, ZHANG Jun-hua1, CAO Xiao-chuang1*, JIN Qian-yu1
Received:
2020-11-02
Accepted:
2021-01-26
Published:
2021-10-25
Contact:
*E-mail: caoxiaochuang@126.com
Supported by:
摘要: 水分和氮素是影响水稻生长发育的两个重要环境因子。适宜的水氮耦合模式可通过“以水调氮、以水控氧”调控稻田根际氮形态和溶氧量等环境因子,促进良好根系形态构建,提高叶片光合速率和光合产物“源-库”分配平衡,提高水稻群体质量和产量形成。同时,稻田水氮氧环境因子驱动的微生物调控机制在水稻-土壤系统氮高效利用方面也发挥重要作用。本文重点阐述了水氮耦合下水分、氮形态和溶氧量对水稻生长发育、光合作用、碳氮代谢、稻田氮转化过程及其微生物调控机制等方面的研究进展,展望并提出了未来亟待加强的研究方向:1)开展水氮耦合下水稻根际溶氧量时空动态分布特征及氧环境调控关键因子研究;2)明确不同基因型水稻根源信号增氧响应特征及其对水稻生长发育的影响调控机制;3)阐明根际氧环境驱动的关键微生物过程对稻田氮转化和氮素利用的影响。
吴龙龙, 田仓, 张露, 黄晶, 朱练峰, 张均华, 曹小闯, 金千瑜. 稻田水氮氧环境因子对水稻生长发育、光合作用和氮利用的调控研究进展[J]. 应用生态学报, 2021, 32(4): 1498-1508.
WU Long-long, TIAN Cang, ZHANG Lu, HUANG Jing, ZHU Lian-feng, ZHANG Jun-hua, CAO Xiao-chuang, JIN Qian-yu. Research advance in the roles of water-nitrogen-oxygen factors in mediating rice growth, photosynthesis and nitrogen utilization in paddy soils.[J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1498-1508.
[1] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924 [Zhang F-S, Wang J-Q, Zhang W-F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924] [2] Kogel-Knabner I, Amelung W, Cao ZH, et al. Biogeochemistry of paddy soils. Geoderma, 2010, 157: 1-14 [3] 柴娟娟, 廖敏, 徐培智, 等. 我国主要低产水稻冷浸田养分障碍因子特征分析. 水土保持学报, 2012, 26(2): 284-288 [Chai J-J, Liao M, Xu P-Z, et al. Feature analysis on nutrient’s restrictive factors of major low productive waterlogged paddy soil in China. Journal of Soil and Water Conservation, 2012, 26(2): 284-288] [4] Cao XC, Zhong C, Zhu CQ, et al. Variability of leaf photosynthetic characteristics in rice and its relationship with resistance to water stress under different nitrogen nutrition regimes. Physiologia Plantarum, 2019, 167: 613-627 [5] Cao XC, Zhu CQ, Zhong C, et al. Nitric oxide synthase-mediated early nitric oxide burst alleviates water stress-induced oxidative damage in ammonium-supplied rice roots. MBC Plant Biology, 2019, 19: 108 [6] Cao XC, Zhong C, Zhu CQ, et al. Ammonium uptake and metabolism alleviate PEG-induced water stress in rice seedlings. Plant Physiology and Biochemistry, 2018, 132: 128-137 [7] Ding L, Gao CM, Li YR, et al. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Science, 2015, 234: 14-21 [8] 徐春梅. 水稻根际氧浓度对分蘖期根系形态和氮代谢的影响机制. 博士论文. 南昌: 江西农业大学, 2016 [Xu C-M. Effect Mechanism of Rice Rhizosphere Oxygen Concentration on Root Morphology and Nitrogen Metabolism at Tillering Stage. PhD Thesis. Nanchang: Jiangxi Agricultural University, 2016] [9] Zhu LF, Yu SM, Jin QY. Effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice. Rice Science, 2012, 19: 44-48 [10] 胡继杰, 朱练峰, 胡志华, 等. 土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响. 农业工程学报, 2017, 33(1): 167-174 [Hu J-J, Zhu L-F, Hu Z-H, et al. Effects of soil aeration methods on soil nitrogen transformation, rice nitrogen utilization and yield. Tran-sactions of the Chinese Society of Agricultural Enginee-ring, 2017, 33(1): 167-174] [11] Fierer N, Schimel JP. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 2002, 34: 777-787 [12] Liu LJ, Chen TT, Wang ZQ, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Research, 2013, 154: 226-235 [13] 孙永健, 孙园园, 徐徽, 等. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40(9): 1639-1649 [Sun Y-J, Sun Y-Y, Xu H, et al. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agronomica Sinica, 2014, 40(9): 1639-1649] [14] Bailey-Serres J, Fukao T, Gibbs DJ, et al. Making sense of low oxygen sensing. Trends in Plant Science, 2012, 17: 129-138 [15] Ponnamperuma FN, Castro RU. The Chemistry of Submerged Soils. London: Academic Press, 1972 [16] 张传更. 干湿交替和外加氮源对土壤碳氮转化及微生物多样性的影响. 硕士论文. 北京: 中国农业科学院, 2018 [Zhang C-G. Effects of Drying-Wetting Cycles and Additional Nitrogen Source on Soil Carbon and Nitrogen Transformation and Microbial Diversity. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2018] [17] 徐国伟, 吕强, 陆大克, 等. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响. 作物学报, 2016, 42(10): 1495-1505 [Xu G-W, Lyu Q, Lu D-K, et al. Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characte-ristic and grain-sink activity. Acta Agronomica Sinica, 2016, 42(10): 1495-1505] [18] 徐国伟, 王贺正, 翟志华, 等. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141 [Xu G-W, Wang H-Z, Zhai Z-H, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132-141] [19] Uga Y, Sugimoto K, Ogawa S, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45: 1097-1102 [20] 赵全志, 高尔明, 黄丕生, 等. 水稻穗颈节与基部节间伤流的比较及其氮素调控研究. 作物学报, 2001, 27(1): 103-109 [Zhao Q-Z, Gao E-M, Huang P-S, et al. The comparison and nitrogen nutrition regulations of bleeding in neck-panicle node and basal internode of rice. Acta Agronomica Sinica, 2001, 27(1): 103-109] [21] 沈淮东, 柏彦超, 茅正芳, 等. 不同水氮条件对水稻根系生长的影响. 安徽农业科学, 2008, 36(8): 3166-3168 [Shen H-D, Bai Y-C, Mao Z-F, et al. Effect of different water and nitrogen levels on rice root growth. Journal of Anhui Agriculture Sciences, 2008, 36(8): 3166-3168] [22] 徐春梅, 王丹英, 陈松, 等. 增氧对水稻根系生长与氮代谢的影响. 中国水稻科学, 2012, 26(3): 320-324 [Xu C-M, Wang D-Y, Chen S, et al. Effect of aera-tion on root growth and nitrogen metabolism in rice. Chinese Journal of Rice Science, 2012, 26(3): 320-324] [23] 赵霞. 根际溶氧量对水稻生长及氮利用的影响. 硕士论文. 北京: 中国农业科学院, 2014 [Zhao X. Effect of Rhizosphere Dissolved Oxygen Content on Growth and Nitrogen Utilization of Rice. Master Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2014] [24] 张绍文, 何巧林, 王海月, 等. 控制灌溉条件下施氮量对杂交籼稻F优498氮素利用效率及产量的影响. 植物营养与肥料学报, 2018, 24(1): 82-94 [Zhang S-W, He Q-L, Wang H-Y, et al. Effects of nitrogen application rates on nitrogen use efficiency and grain yield. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 82-94] [25] 武云霞, 郭长春, 孙永健, 等. 水氮互作下直播稻群体质量与氮素利用特征的关系. 应用生态学报, 2020, 31(3): 899-908 [Wu Y-X, Guo C-C, Sun Y-J, et al. Relationship of population quality and nitrogen fertilizer utilization characteristics of direct seeding rice under water-nitrogen interaction. Chinese Journal of Applied Ecology, 2020, 31(3): 899-908] [26] 张自常, 徐云姬, 褚光, 等. 不同灌溉方式下的水稻群体质量. 作物学报, 2011, 37(11): 2011-2019 [Zhang Z-C, Xu Y-J, Chu G, et al. Population quality of rice under different irrigation regimes. Acta Agronomica Sinica, 2011, 37(11): 2011-2019] [27] 朱宽宇, 展明飞, 陈静, 等. 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响. 中国水稻科学, 2018, 32(2): 155-168 [Zhu K-Y, Zhan M-F, Chen J, et al. Effects of irrigation regimes during grain filling under different nitrogen rates on inferior spikelets grain-filling and grain yield of rice. Chinese Journal of Rice Science, 2018, 32(2): 155-168] [28] 翟晶, 张淑玲, 周鹏, 等. 水氮互作对水稻群体结构的影响. 耕作与栽培, 2015(1): 4-5, 8 [Zhai J, Zhang S-L, Zhou P, et al. Effects of water-nitrogen interaction on rice group structure. Tillage and Cultivation, 2015(1): 4-5, 8] [29] 周江明, 姜家彪, 姜新有, 等. 不同肥力稻田晚稻水氮耦合效应研究. 植物营养与肥料学报, 2008, 14(1): 28-35 [Zhou J-M, Jiang J-B, Jiang X-Y, et al. Analysis of water and nitrogen coupling effects in paddy fields with different fertility levels. Journal of Plant Nutrition and Fertilizers, 2008, 14(1): 28-35] [30] 赵锋, 张卫建, 章秀福, 等. 稻田增氧模式对水稻籽粒灌浆的影响. 中国水稻科学, 2011, 25(6): 605-612 [Zhao F, Zhang W-J, Zhang X-F, et al. Effects of oxygen-increasing patterns in paddy fields on rice grain-filling. Chinese Journal of Rice Science, 2011, 25(6): 605-612] [31] 朱练峰, 刘学, 禹盛苗, 等. 增氧灌溉对水稻生理特性和后期衰老的影响. 中国水稻科学, 2010, 24(3): 257-263 [Zhu L-F, Liu X, Yu S-M, et al. Effects of aerated irrigation on physiological characteristics and senescence at late growth stage of rice. Chinese Journal of Rice Science, 2010, 24(3): 257-263] [32] Yang YD, Wang ZM, Hu YG, et al. Irrigation frequency alters the abundance and community structure of ammonia-oxidizing archaea and bacteria in a northern Chinese upland soil. European Journal of Soil Biology, 2017, 83: 34-42 [33] Belder P, Bouman BAM, Cabangon R, et al. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 2004, 65: 193-210 [34] Won JG, Choi JS, Lee SP, et al. Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science, 2005, 8: 487-492 [35] Lu J, Ookawa T, Hirasawa T. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant and Soil, 2000, 223: 207-216 [36] 陈伟, 刘磊, 刘光岩, 等. 辽宁中部地区水稻干湿交替灌溉试验研究. 水利科学与寒区工程, 2019, 2(4): 6-11 [Chen W, Liu L, Liu G-Y, et al. Experimental study on alternate dry-wet irrigation of rice in middle area of Liaoning Province. Hydro Science and Cold Zone Engineering, 2019, 2(4): 6-11] [37] 郑子成, 秦凤, 李廷轩. 不同坡度下紫色土地表微地形变化及其对土壤侵蚀的影响. 农业工程学报, 2015, 31(8): 168-175 [Zheng Z-C, Qin F, Li T-X. Changes in soil surface microrelief of purple soil under different slope gradients and its effects on soil erosion. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 168-175] [38] 陈香碧, 胡亚军, 秦红灵, 等. 稻作系统有机肥替代部分化肥的土壤氮循环特征及增产机制. 应用生态学报, 2020, 31(3): 1033-1042 [Chen X-B, Hu Y-J, Qin H-L, et al. Characteristics of soil nitrogen cycle and mechanisms underlying the increase in rice yield with partial substitution of mineral fertilizers with organic manure in a paddy ecosystem: A review. Chinese Journal of Applied Ecology, 2020, 31(3): 1033-1042] [39] Geigenberger P. Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology, 2003, 6: 247-256 [40] 王绍华, 曹卫星, 丁艳锋, 等. 水氮互作对水稻氮吸收与利用的影响. 中国农业科学, 2004, 37(4): 497-501 [Wang S-H, Cao W-X, Ding Y-F, et al. Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice. Scientia Agricultura Sinica, 2004, 37(4): 497-501] [41] 孙晓东. 乙烯生物合成的途径及影响因素. 陕西学前师范学院学报, 1994, 10(1): 57, 96-98 [Sun X-D. Pathways and influencing factors of ethylene biosynthesis. Journal of Shaanxi Xueqian Normal University, 1994, 10(1): 57, 96-98] [42] 杨建昌, 常二华, 张文杰, 等. 根系化学讯号与稻米品质的关系. 中国农业科学, 2006, 39(1): 38-47 [Yang J-C, Chang E-H, Zhang W-J, et al. Relationship between root chemical signals and grain quality of rice. Scientia Agricultura Sinica, 2006, 39(1): 38-47] [43] 杨建昌, 常二华, 唐成, 等. 结实期籽粒乙烯释放速率和1-氨基环丙烷-1-羧酸浓度与稻米外观品质的关系. 中国水稻科学, 2007, 21(1): 77-83 [Yang J-C, Chang E-H, Tang C, et al. Relationships of ethylene evolution rate and 1-aminocylopropane-1-carboxylic acid concentration in grains during grain filling with appea-rance quality of rice. Chinese Journal of Rice Science, 2007, 21(1): 77-83] [44] 路兴花. 覆膜旱作稻营养生理和品质特性的研究. 硕士论文. 杭州: 浙江大学, 2002 [Lu X-H. Studies of the Nutrition Physiology and Qualitative Character of Film Mulched Rice. Master Thesis. Hangzhou: Zhejiang University, 2002] [45] 柯传勇. 不同水分处理对水稻生长、产量及品质的影响. 硕士论文. 武汉: 华中农业大学, 2010 [Ke C-Y. Effect of Different Water Treatment on Rice Growth, Yield and Quality. Master Thesis. Wuhan: Huazhong Agricultural University, 2010] [46] 陈新红, 刘凯, 徐国伟, 等. 结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响. 上海交通大学学报: 农业科学版, 2004, 22(1): 48-53 [Chen X-H, Liu K, Xu G-W, et al. Effects of nitrogen and soil moisture on photosynthetic characters of flag leaf, yield and quality during grain filling in rice. Journal of Shanghai Jiaotong University: Agricultural Sciences, 2004, 22(1): 48-53] [47] 张自常, 李鸿伟, 陈婷婷, 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011, 44(24): 4988-4998 [Zhang Z-C, Li H-W, Chen T-T, et al. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice. Scientia Agricultura Sinica, 2011, 44(24): 4988-4998] [48] 郭群善, 贺玮. 水氮互作对水稻产量及品质的影响. 节水灌溉, 2016(5): 42-47 [Guo Q-S, He W. Effects of water and nitrogen interaction on yield and quality of rice. Water Saving Irrigation, 2016(5): 42-47] [49] Alexander G, Igor FS, Magdalena T, et al. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): Acclimation or limitation? Journal of Experimental Botany, 2009, 60: 2379-2390 [50] Li Y, Ren BB, Yang XX, et al. Chloroplast downsizing under nitrate nutrition restrained mesophyll conductance and photosynthesis in rice (Oryza sativa L.) under drought conditions. Plant and Cell Physiology, 2012, 53: 892-900 [51] Lawlor DW, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Annals of Botany, 2009, 103: 561-579 [52] Guo SW, Zhou Y, Shen QR, et al. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants: Growth, photosynthesis, photorespiration, and water relations. Plant Biology, 2007, 9: 21-29 [53] Raven JA. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist, 1985, 101: 25-77 [54] Horacio EB, Michael SW, Euan GM, et al. The influence of nitrogen and phosphorus supply and genotype on meso-phyll conductance limitations to photosynthesis in Pinus radiata. Tree Physiology, 2009, 29: 1143-1151 [55] 石鑫蕊, 任彬彬, 江琳琳, 等. 有机肥替代部分化肥对水稻光合速率、氮素利用率和产量的影响. 应用生态学报, 2021, 32(1): 154-162 [Shi X-R, Ren B-B, Jiang L-L, et al. Effects of organic manure partial substitution for chemical fertilizer on the photosynthetic rate, nitrogen use efficiency and yield of rice. Chinese Journal of Applied Ecology, 2021, 32(1): 154-162] [56] Li Y, Yang XX, Ren BB, et al. Why nitrogen use efficiency decreases under high nitrogen supply in rice (Oryza sativa L.) seedlings. Journal of Plant Growth Regulation, 2012, 31: 47-52 [57] Ghannoum O, Evans JR, Chow WS, et al. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiology, 2005, 137: 638-650 [58] Xu W, Cui KH, Xu AH, et al. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 2015, 37: 1-11 [59] Yang JC, Zhang JH, Wang ZQ, et al. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain fil-ling. Planta, 2002, 215: 645-652 [60] Xu WF, Jia LG, Shi WM, et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytologist, 2013, 197: 139-150 [61] Dello-Ioio R, Linhares FS, Scacchi E, et al. Cytokinins determine arabidopsis root-meristem size by controlling cell differentiation. Current Biology, 2007, 17: 678-682 [62] Rahayu YS, Walch-Liu P, Neumann G, et al. Root-derived cytokinins as long-distance signals for NO3--induced stimulation of leaf growth. Journal of Experimental Botany, 2005, 56: 1143-1152 [63] Han HM, Tian ZW, Fan YH, et al. Water-deficit treatment followed by re-watering stimulates seminal root growth associated with hormone balance and photosynthesis in wheat (Triticum aestivum L.) seedlings. Plant Growth Regulation, 2015, 77: 201-210 [64] Yang JC, Zhang JH, Wang ZQ, et al. Hormones in the grains in relation to sink strength and postanthesis deve-lopment of spikelets in rice. Plant Growth Regulation, 2003, 41: 185-195 [65] Acharya BR, Assmann SM. Hormone interactions in stomatal function. Plant Molecular Biology, 2009, 69: 451-462 [66] Dodd IC. Hormonal interactions and stomatal responses. Journal of Plant Growth Regulation, 2003, 22: 32-46 [67] Sally W, William JD. Drought, ozone, ABA and ethy-lene: New insights from cell to plant to community. Plant, Cell and Environment, 2010, 33: 510-525 [68] 赵步洪, 张洪熙, 朱庆森, 等. 两系杂交稻籽粒充实不良的成因及其与激素含量的关系. 中国农业科学, 2006, 39(3): 477-486 [Zhao B-H, Zhang H-X, Zhu Q-S, et al. Causes of poor grain plumpness of two-line hybrids and their relationships to contents of hormones in the rice grain. Scientia Agricultura Sinica, 2006, 39(3): 477-486] [69] Chu G, Chen TT, Wang ZQ, et al. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Research, 2014, 162: 108-119 [70] John PH, Philip JW. Sugar signaling in root responses to low phosphorus availability. Plant Physiology, 2011, 156: 1033-1040 [71] Thomas LS. Non-structural carbohydrate partitioning in grass stems: A target to increase yield stability, stress tolerance, and biofuel production. Journal of Experimental Botany, 2012, 163: 4647-4670 [72] Cao XC, Zhu CQ, Zhong C, et al. Mixed-nitrogen nutrition-mediated enhancement of drought tolerance of rice seedlings associated with photosynthesis, hormone ba-lance and carbohydrate partitioning. Plant Growth Regulation, 2018, 84: 451-465 [73] 张忠学, 陈鹏, 陈帅宏, 等. 15N示踪分析节水灌溉下水稻对不同时期氮肥的吸收分配. 农业机械学报, 2018, 49(6): 309-317 [Zhang Z-X, Chen P, Chen S-H, et al. 15N tracer-based analysis of water and nitrogen management differences in uptake and partitioning of N applied at different growth stages in transplanted rice. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 309-317] [74] 张亚丽, 董园园, 沈其荣, 等. 不同水稻品种对铵态氮和硝态氮吸收特性的研究. 土壤学报, 2004, 41(6): 918-923 [Zhang Y-L, Dong Y-Y, Shen Q-R, et al. Characteristics of NH4+ and NO3- uptake by rice of different genotypes. Acta Pedologica Sinica, 2004, 41(6): 918-923] [75] Cao XC, Wu MY, Zhu CQ, et al. Glutamate dehydrogenase mediated amino acid metabolism after ammonium uptake enhances rice growth under aeration condition. Plant Cell Reports, 2020, 39: 363-379 [76] Oliveira HC, Sodek L. Effect of oxygen deficiency on nitrogen assimilation and amino acid metabolism of soybean root segments. Amino Acids, 2013, 44: 743-755 [77] Horchani F, Aschi-Smiti S, Brouquisse R. Involvement of nitrate reduction in the tolerance of tomato (Solanum lycopersicum L.) plants to prolonged root hypoxia. Acta Physiologiae Plantarum, 2010, 32: 1113-1123 [78] Bouguyon E, Perrine-Walker F, Pervent M, et al. Nitrate controls root development through post-transcriptional regulation of the nrt1.1/npf6.3 transporter/sensor. Plant Physiology, 2016, 172: 1237-1248 [79] Ye YS, Liang XQ, Chen YX, et al. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice: Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Research, 2013, 144: 212-224 [80] Yi XP, Zhang YL, Yao HS, et al. Alternative electron sinks are crucial for conferring photoprotection in field-grown cotton under water deficit during flowering and boll setting stages. Functional Plant Biology, 2014, 41: 737-747 [81] Zhang YL, Lyu HJ, Wang DS, et al. Partial nitrate nutrition amends photosynthetic characteristics in rice (Oryza sativa L. var. japonica) differing in nitrogen use efficiency. Plant Growth Regulation, 2011, 63: 235-242 [82] Zhong C, Cao XC, Bai ZG, et al. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.). Plant Phy-siology and Biochemistry, 2018, 125: 52-62 [83] Undurraga SF, Ibarra-Henríquez C, Fredes I, et al. Nitrate signaling and early responses in Arabidopsis roots. Journal of Experimental Botany, 2017, 68: 2541-2551 [84] Funk JL, Glenwinkel LA, Sack L. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species. PLoS One, 2013, 8: e64502 [85] Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 2004, 18: 419-425 [86] Zhong C, Jian SF, Huang J, et al. Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2019, 135: 41-50 [87] Trouwborst G, Hogewoning SW, Harbinson J, et al. Photosynthetic acclimation in relation to nitrogen allocation in cucumber leaves in response to changes in irra-diance. Physiologia Plantarum, 2011, 142: 157-169 [88] Li H, Hu B, Chu CC. Nitrogen use efficiency in crops: Lessons from Arabidopsis and rice. Journal of Experimental Botany, 2017, 68: 2477-2488 [89] Perchlik M, Tegeder M. Leaf amino acid supply affects photosynthetic and plant nitrogen use efficiency under nitrogen stress. Plant Physiology, 2018, 178: 174-188 [90] Shen JP, Zhang LM, Di HJ, et al. A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, 2012, 3: 296-302 [91] Yang YD, Ren YF, Wang XQ, et al. Ammonia-oxidizing archaea and bacteria responding differently to ferti-lizer type and irrigation frequency as revealed by Illumina Miseq sequencing. Journal of Soils and Sediments, 2018, 18: 1029-1040 [92] Nguyen QV, Wu D, Kong XW, et al. Effects of cattle slurry and nitrification inhibitor application on spatial soil O2 dynamics and N2O production pathways. Soil Biology and Biochemistry, 2017, 114: 200-209 [93] 陈宾宾, 邹德堂, 赵宏伟, 等. 水、氮互作对水稻碳水化合物形成、运转和累积的影响. 灌溉排水学报, 2015, 34(7): 34-39 [Chen B-B, Zou D-T, Zhao H-W, et al. Effects of water-nitrogen interaction on formation, operation and cumulation of japonica rice carbohydrate in cold region. Journal of Irrigation and Drainage, 2015, 34(7): 34-39] [94] Ke XB, Lu W, Conrad R. High oxygen concentration increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil. Microbial Ecology, 2015, 70: 961-970 [95] Abbas T, Zhang QC, Jin H, et al. Anammox microbial community and activity changes in response to water and dissolved oxygen managements in a paddy-wheat soil of Southern China. Science of the Total Environment, 2019, 672: 305-313 [96] Espańa M, Rasche F, Kandeler E, et al. Assessing the effect of organic residue quality on active decomposing fungi in a tropical Vertisol using 15N-DNA stable isotope probing. Fungal Ecology, 2011, 4: 115-119 [97] Jia ZJ, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 2009, 11: 1658-1671 [98] Zhang JY, Liu YX, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37: 676-684 [99] Larsen M, Santner J, Oburger E, et al. O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes. Plant and Soil, 2015, 390: 279-292 [100] Marzocchi U, Benelli S, Larsen M, et al. Spatial hete-rogeneity and short-term oxygen dynamics in the rhizosphere of Vallisneria spiralis: Implications for nutrient cycling. Freshwater Biology, 2019, 64: 532-543 [101] 杨波. 内生真菌拟茎点霉B3对水稻氮素利用的影响及机理研究. 硕士论文. 南京: 南京师范大学, 2014 [Yang B. Effects and Mechanisms of Fungal Endophyte Phomopsis liquidambari on Nitrogen Use in Rice. Master Thesis. Nanjing: Nanjing Normal University, 2014] |
[1] | 吕佳佳, 初征, 李百超, 宫丽娟, 周宝才, 刘丹, 王冬妮, 姜丽霞. 东北地区水稻开花期冷涡型光-温-水复合逆境产量损失评估指标构建 [J]. 应用生态学报, 2024, 35(3): 731-738. |
[2] | 甘菲菲, 招礼军, 霍灿灿, 王晟. 光照和水分对四季米仔兰幼苗生长的影响 [J]. 应用生态学报, 2024, 35(2): 439-446. |
[3] | 王复标, 杨小龙, 康华靖, 叶子飘. 不同环境条件下光合作用对光响应模型的研究进展 [J]. 应用生态学报, 2023, 34(7): 1995-2005. |
[4] | 韦兆伟, 陈若谷, 殷楠, 柯浩楠, 沙雅晴, 赵峻池, 李琪, 胡正华. 基于稻瘟病的水稻抗逆性对CO2浓度和温度升高的响应 [J]. 应用生态学报, 2023, 34(6): 1563-1571. |
[5] | 张慧玉, 岳丹斐, 潘晓娇, 郝露露, 刘伟成, 郑春芳. 5-羟色胺在红树植物秋茄幼苗抗寒中的作用 [J]. 应用生态学报, 2023, 34(5): 1263-1271. |
[6] | 娄运生, 于玉洁, 刘燕, 杨蕙琳, 周东雪. 施硅对夜间增温下南方水稻生长、产量和品质的影响 [J]. 应用生态学报, 2023, 34(4): 985-992. |
[7] | 宁川川, 陈悦桂, 柳瑞, 李彤欣, 陈海浪, 田纪辉, 蔡昆争. 减氮配施秸秆生物炭对双季稻产量和硅、氮营养的影响 [J]. 应用生态学报, 2023, 34(4): 993-1001. |
[8] | 张鸿志, 张文娥, 樊卫国, 欧阳章维, 蔡虎, 郝振坤, 王瑞璞, 潘学军. 核桃/刺梨复合种植对刺梨生长、果实产量、品质和土壤性质的影响 [J]. 应用生态学报, 2023, 34(3): 699-707. |
[9] | 赵雷, 靳海笛, 曹晓云, 邓文辉, 杜灵娟. 六个东方铁筷子品种对干旱胁迫的生理响应及抗旱性评价 [J]. 应用生态学报, 2023, 34(10): 2644-2654. |
[10] | 时一平, 宋彦涛, 那木汗, 彭擎天, 吕林有, 申悦, 倩娜, 乌云娜. 羊草和紫花苜蓿人工草地光合特性 [J]. 应用生态学报, 2023, 34(10): 2655-2662. |
[11] | 李传梁, 于振文, 张娟, 张永丽, 石玉. 测墒补灌条件下施氮量对小麦开花后13C同化物积累量和水氮利用效率的影响 [J]. 应用生态学报, 2023, 34(1): 92-98. |
[12] | 石丽红, 唐海明, 文丽, 程凯凯, 李超, 李微艳, 肖小平. 长期不同施肥模式对南方双季稻田生态系统净碳汇效应和经济收益的影响 [J]. 应用生态学报, 2022, 33(9): 2450-2456. |
[13] | 胡旺, 赵杭, 周旋, 王艺哲, 张含丰, 张玉平. 施用南荻生物炭对不同类型土壤氨挥发的影响 [J]. 应用生态学报, 2022, 33(7): 1919-1926. |
[14] | 刘梅朔, 王传宽, 全先奎. 兴安落叶松叶光合与氮代谢对环境变化响应的转录组分析 [J]. 应用生态学报, 2022, 33(4): 957-962. |
[15] | 谌洁, 吕腾飞, 王志强, 王仲林, 林郸, 李郁, 杨志远, 孙永健, 马均. 青菜/油菜茬口下水稻栽植方式对温光资源利用和产量的影响 [J]. 应用生态学报, 2022, 33(2): 405-414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||