[1] Elser JJ, Sterner RW, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3: 540-550 [2] 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说. 植物生态学报, 2021, 45(7): 682-713 [3] Cao Y, Chen YM. Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecological Engineering, 2017, 105: 125-132 [4] 田地, 严正兵, 方精云. 植物化学计量学: 一个方兴未艾的生态学研究方向. 自然杂志, 2018, 40(4): 235-241 [5] Chen X, Chen HYH. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nature Communications, 2021, 12: 4562 [6] Cao Y, Zhang P, Chen YM. Soil C:N:P stoichiometry in plantations of N-fixing black locust and indigenous pine, and secondary oak forests in Northwest China. Journal of Soils and Sediments, 2018, 18: 1478-1489 [7] Elser JJ, Fagan WF, Kerkhoff AJ, et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186: 593-608 [8] 章广琦, 张萍, 陈云明, 等. 黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征. 生态学报, 2018, 38(4): 1328-1336 [9] 张萍, 章广琦, 赵一娉, 等. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征. 生态学报, 2018, 38(14): 5087-5098 [10] Cao Y, Li YN, Zhang GQ, et al. Fine root C:N:P stoichiometry and its driving factors across forest ecosystems in northwestern China. Science of the Total Environment, 2020, 737: 140299 [11] 周永姣, 王满堂, 王钊颖, 等. 亚热带59个常绿与落叶树种不同根序细根养分及化学计量特征. 生态学报, 2020, 40(14): 4975-4984 [12] Li YG, Dong XX, Yao WX, et al. C, N, P, K stoichiometric characteristics of the ‘leaf-root-litter-soil’ system in dryland plantations. Ecological Indicators, 2022, 143: 109371 [13] 王聪, 伍星, 傅伯杰, 等. 重点脆弱生态区生态恢复模式现状与发展方向. 生态学报, 2019, 39(20): 7333-7343 [14] 刘国彬, 上官周平, 姚文艺, 等. 黄土高原生态工程的生态成效. 中国科学院院刊, 2017, 32(1): 11-19 [15] 王月玲, 马璠, 许浩, 等. 宁南山区不同年限撂荒梯田土壤碳氮磷化学计量特征. 水土保持研究, 2019, 26(6): 25-31 [16] 陶吉杨. 宁南山区不同混交林模式下土壤生态环境特征及其评价. 硕士论文. 宁夏: 宁夏大学, 2021 [17] 王凯, 雷虹, 石亮, 等. 沙地樟子松带状混交林土壤碳氮磷化学计量特征. 应用生态学报, 2019, 30(9): 2883-2891 [18] Marron N, Epron D. Are mixed-tree plantations including a nitrogen-fixing species more productive than mono-cultures? Forest Ecology and Management, 2019, 441: 242-252 [19] 焦秋燕, 黄林嘉, 张娟娟, 等. 黄土丘陵沟壑区刺槐混交林生态化学计量特征与碳储量. 水土保持学报, 2022, 36(2): 238-246 [20] 吴旭, 牛耀彬, 陈云明, 等. 黄土丘陵区沙棘混交林叶片、凋落物、土壤碳氮磷化学计量特征. 水土保持学报, 2021, 35(4): 369-376 [21] 张藤子, 李亚楠, 韩飞燕, 等. 辽西两种油松混交林土壤及油松叶片C:N:P化学计量特征. 生态学杂志, 2018, 37(10): 3061-3067 [22] 马远远, 马琨, 马斌, 等. 阳洼流域土壤137Cs的空间分布及侵蚀研究. 水土保持通报, 2008, 28(2): 27-30 [23] Niklas KJ, Owens T, Reich PB, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8: 636-642 [24] Han WX, Fang JY, Guo DL, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 2005, 168: 377-385 [25] Elser JJ, Fagan WF, Denno RF, et al. Nutritional constrains in terrestrial and freshwater food webs. Nature, 2000, 408: 578-580 [26] 郑淑霞, 上官周平. 黄土高原地区植物叶片养分组成的空间分布格局. 自然科学进展, 2006, 16(8): 965-973 [27] Güsewell S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164: 243-266 [28] 周运红, 李建亮, 王利东, 等. 间伐对华北落叶松林凋落物分解的影响. 北京林业大学学报, 2021, 43(12): 29-37 [29] 李澳归, 蔡世锋, 罗素珍, 等. 亚热带常绿阔叶林62种木本植物凋落叶碳氮磷化学计量特征. 应用生态学报, 2023, 34(5): 1153-1160 [30] 张楠, 杨智杰, 胥超, 等. 中亚热带森林转换对凋落物养分归还及养分利用效率的影响. 应用生态学报, 2022, 33(2): 321-328 [31] 马玉成, 吴红霞. 干旱山区山杏栽培技术. 宁夏农林科技, 2008(1): 92-93 [32] 苏静, 赵世伟. 植被恢复对土壤团聚体分布及有机碳、全氮含量的影响. 水土保持研究, 2005, 12(3): 44-46 [33] 姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tabuliformis)人工林植物、凋落物与土壤C、N、P化学计量特征. 生态学报, 2016, 36(19): 6188-6197 [34] 满洲. 半干旱黄土丘陵区不同恢复人工林土壤碳组分分异性研究. 硕士论文. 郑州: 华北水利水电大学, 2019 [35] 王淳, 董雪婷, 杜瑞鹏, 等. 华北落叶松与阔叶树种混合凋落叶分解过程中养分释放和酶活性变化. 应用生态学报, 2021, 32(5): 1709-1716 [36] 刘旭军, 程小琴, 田慧霞, 等. 不同间伐强度下华北落叶松人工林土壤磷组分特征及其影响因素. 应用生态学报, 2018, 29(12): 3941-3948 [37] 李娜, 赵传燕, 郝虎, 等. 海拔和郁闭度对祁连山青海云杉林叶凋落物分解的影响. 生态学报, 2021, 41(11): 4493-4502 [38] 董廷发. 不同海拔云南松林土壤养分及其生态化学计量特征. 生态学杂志, 2021, 40(3): 672-679 [39] 钱文丽, 卢元, 王韶仲, 等. 混交对红松人工林细根生物量和空间分布的影响. 东北林业大学学报, 2016, 44(2): 1-5 [40] 刘逸潇, 王传宽, 上官虹玉, 等. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报, 2023, 34(7): 1797-1805 [41] Cui R, Hirano T, Sun L, et al. Variations in biomass, production and respiration of fine roots in a young larch forest. Journal of Agricultural Meteorology, 2021, 77: 167-178 [42] Chen LL, Deng Q, Yuan ZY, et al. Age-related C:N:P stoichiometry in two plantation forests in the Loess Pla-teau of China. Ecological Engineering, 2018, 120: 14-22 [43] Santos FM, Chaer GM, Diniz AR, et al. Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. Forest Eco-logy and Management, 2017, 384: 110-121 [44] Wambsganss J, Freschet GT, Beyer F, et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Functional Ecology, 2021, 35: 1886-1902 [45] 孙佳祺, 熊维彬, 李永奇, 等. 中国不同生活型植物细根碳氮磷化学计量特征及其影响因子. 防护林科技, 2021(4): 28-32 [46] 杨幸, 王平, 高大威, 等. 云南药山自然保护区黄背栎林和巧家五针松林生态化学计量特征. 生态学报, 2019, 39(11): 4021-4028 [47] Guo LL, Deng MF, Yang S, et al. The coordination between leaf and fine root litter decomposition and the difference in their controlling factors. Global Ecology and Biogeography, 2021, 30: 2286-2296 [48] Seidel F, Lopez CML, Celi L, et al. N isotope fractionation in tree tissues during N reabsorption and remobilization in Fagus crenata Blume. Forests, 2019, 10: 330 |