[1] Sinsabaugh RL, Hill BH, Follstad Shah JJ. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798 [2] Sinsabaugh RL, Follstad Shah JJ. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313-343 [3] Sterner RW, Elser JJ. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ, USA: Princeton University Press, 2003 [4] Brown JH, Gillooly JF, Allen AP, et al. Toward a metabolic theory of ecology. Ecology, 2004, 85: 1771-1789 [5] Allison VJ, Condron LM, Peltzer DA, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry, 2007, 39: 1770-1781 [6] Wood TE, Lawrence D, Clark DA, et al. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology, 2009, 90: 109-121 [7] Berg B, Johansson MB, Meentemeyer V. Litter decomposition in a transect of Norway spruce forests: Substrate quality and climate control. Canadian Journal of Forest Research, 2000, 30: 1136-1147 [8] 郭鑫, 罗欢, 许雪梅, 等. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响. 草业学报, 2023, 32(5): 83-93 [9] Fanin N, Alavoine G, Bertrand I. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma, 2020, 377: 114576 [10] 秦立厚, 刘琪璟, 孙震, 等. 长白山阔叶红松林主要树种凋落叶分解速率及其与叶性状的关系. 生态学报, 2022, 42(14): 5894-5905 [11] Maillard F, Leduc V, Viotti C, et al. Fungal communities mediate but do not control leaf litter chemical transformation in a temperate oak forest. Plant and Soil, 2023, 489: 573-591 [12] 肖文贤, 王克勤, 宋娅丽, 等. 氮沉降下滇中高原森林凋落物分解特征对其持水性的影响. 水土保持学报, 2023, 37(1): 227-237 [13] 李树斌, 郑茹萍, 周丽丽, 等. 不同耐旱型杉木幼苗的水力结构特征. 应用与环境生物学报, 2021, 28(6): 1571-1577 [14] Osuri AM, Gopal A, Raman TRS, et al. Greater stability of carbon capture in species-rich natural forests compared to species-poor plantations. Environmental Research Letters, 2020, 15: 034011 [15] Ni X, Lin C, Chen G, et al. Decline in nutrient inputs from litterfall following forest plantation in subtropical China. Forest Ecology and Management, 2021, 496: 119445 [16] 杜琳, 倪祥银, 卫芯宇, 等. 中亚热带4种不同类型森林凋落叶对土壤非结构性碳水化合物的影响. 应用与环境生物学报, 2023, 29(3): 624-631 [17] Sinsabaugh RL, Antibus RK, Linkins AE, et al. Wood decomposition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology, 1993, 74: 1586-1593 [18] Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707 [19] Moorhead DL, Sinsabaugh RL, Hill BH, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry, 2016, 93: 1-7 [20] Butler NA, Denham MC. The peculiar shrinkage properties of partial least squares regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2000, 62: 585-593 [21] Terrer C, Vicca S, Hungate BA, et al. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 2016, 353: 72-74 [22] Allison SD, Vitousek PM. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 2005, 37: 937-944 [23] 陈月鹏, 李石开, 安波, 等. 亚热带树种的菌根和根外菌丝对土壤氮矿化及酶活性的影响. 应用生态学报, 2023, 34(5): 1235-1243 [24] 薛欣欣, 任常琦, 罗雪华, 等. 氮添加与凋落物处理对橡胶林砖红壤有机碳组分及酶活性的影响. 环境科学, 2024, 45(1): 354-363 [25] Allison SD, Gartner TB, Holland K, et al. Soil enzymes: Linking proteomics and ecological processes// Hurst CJ, Crawford RL, Garland JL, eds. Manual of Environmental Microbiology. Washington, DC: Wiley-Blackwell, 2007: 704-711 [26] Burns RG. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58: 216-234 [27] Song JY, Kaeppler SM. Induction of maize acid phosphatase activities under phosphorus starvation. Plant and Soil, 2001, 237: 109-115 [28] Li B, Li Y, Fanin N, et al. Stoichiometric imbalances between soil microorganisms and their resources regulate litter decomposition. Functional Ecology, 2023, 37: 3136-3149 [29] Wu J, Zhang H, Cheng X, et al. Nitrogen addition stimulates litter decomposition rate: From the perspective of the combined effect of soil environment and litter quality. Soil Biology and Biochemistry, 2023, 179: 108992 [30] Liu Y, Shen X, Chen Y, et al. Litter chemical quality strongly affects forest floor microbial groups and ecoenzymatic stoichiometry in the subalpine forest. Annals of Forest Science, 2019, 76: 106 [31] Mori T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? Soil Biology and Biochemistry, 2020, 146: 107816 [32] Elrys AS, Zhu Q, Jiang C, et al. Global soil nitrogen cycle pattern and nitrogen enrichment effects: Tropical versus subtropical forests. Global Change Biology, 2023, 29: 1905-1921 [33] Yan B, Duan M, Wang R, et al. Planted forests intensified soil microbial metabolic nitrogen and phosphorus limitation on the Loess Plateau, China. Catena, 2022, 211: 105982 [34] 赵娜, 王小利, 何进, 等. 有机肥替代化学氮肥对黄壤活性有机碳组分、酶活性及作物产量的影响. 环境科学, 2024, https://doi.org/10.13227/j.hjkx.202307222 [35] 罗娜娜, 盛茂银, 王霖娇, 等. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响. 植物生态学报, 2023, 47(6): 867-881 [36] Fekete I, Varga C, Kotroczó Z, et al. The relation between various detritus inputs and soil enzyme activities in a Central European deciduous forest. Geoderma, 2011, 167-168: 15-21 [37] Veres Z, Kotroczó Z, Fekete I, et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Applied Soil Ecology, 2015, 92: 18-23 [38] 刘苑苑, 程蕾, 周嘉聪, 等. 添加不同植物来源叶片可溶性有机质和氮对亚热带人工林土壤酶活性的影响. 应用生态学报, 2023, 29(1): 169-177 [39] Mooshammer M, Wanek W, Zechmeister-Boltenstern S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 2014, 5: 22 [40] 豆梦珂, 张伟东, 杨庆朋, 等. 杉木种植和磷添加对土壤微生物生物量及胞外酶活性的影响. 应用生态学报, 2023, 34(3): 631-638 [41] 杨玉盛, 林鹏, 郭剑芬, 等. 格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解(英文). 生态学报, 2003, 23(7): 1278-1289 [42] 吴君君, 杨智杰, 刘小飞, 等. 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 2014, 38(1): 45-53 [43] Yang Y, Wang L, Yang Z, et al. Large ecosystem service benefits of assisted natural regeneration. Journal of Geophysical Research: Biogeosciences, 2018, 123: 676-687 |