[1] |
曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 2005, 29(6): 1007-1019
|
[2] |
曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展. 生态学报, 2013, 33(18): 5484-5492
|
[3] |
Sterner RW, Elser JJ. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ, USA: Princeton University Press, 2017: 584
|
[4] |
Ågren GI. The C:N:P stoichiometry of autotrophs-theory and observations. Ecology Letters, 2004, 7: 185-191
|
[5] |
田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说. 植物生态学报, 2021, 45(7): 682-713
|
[6] |
Güsewell S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164: 243-266
|
[7] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, et al. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: What is the link with other resource economics traits? New Phytologist, 2010, 186: 879-889
|
[8] |
Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 2012, 82: 205-220
|
[9] |
张耀艺, 倪祥银, 杨静, 等. 中亚热带同质园不同树种氮磷重吸收及化学计量特征. 应用生态学报, 2021, 32(4): 1154-1162
|
[10] |
王振南, 赵梅, 杨燕, 等. 苜蓿叶片氮、磷和钾养分重吸收与化学计量比的偶联关系. 草业学报, 2019, 28(11): 177-183
|
[11] |
魏大平, 张健, 张丹桔, 等. 不同林冠郁闭度马尾松(Pinus massoniana)叶片养分再吸收率及其化学计量特征. 应用与环境生物学报, 2017, 23(3): 560-569
|
[12] |
邓浩俊, 吴承祯, 张广帅, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征. 应用与环境生物学报, 2015, 21(3): 522-527
|
[13] |
Elser JJ, Fagan WF, Kerkhoff AJ, et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186: 593-608
|
[14] |
Yuan ZY, Chen HYH. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography, 2009, 18: 11-18
|
[15] |
李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度下草本植物生物量的变化及其氮、磷化学计量学特征. 植物营养与肥料学报, 2015, 21(3): 743-751
|
[16] |
Du BM, Ji HW, Liu SR, et al. Nutrient resorption stra-tegies of three oak tree species in response to interannual climate variability. Forest Ecosystems, 2021, 8: 70
|
[17] |
McGroddy ME, Daufresne T, Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios. Ecology, 2008, 85: 2390-2401
|
[18] |
Tian D, Yan ZB, Ma SH, et al. Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Science China Life Sciences, 2019, 62: 1047-1057
|
[19] |
郭卫红, 王华, 虞木奎, 等. 沿海地区水杉叶片性状的纬度变化机制. 应用生态学报, 2017, 28(3): 772-778
|
[20] |
杜天雨. 不同纬度红松天然林碳、氮、磷、钙化学计量特征研究. 硕士论文. 沈阳: 沈阳农业大学, 2017
|
[21] |
吴兆飞, 张雨秋, 张忠辉, 等. 东北温带森林林分结构与生产力关系研究. 北京林业大学学报, 2019, 41(5): 48-55
|
[22] |
张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响. 植物生态学报, 2021, 45(3): 253-264
|
[23] |
Chen LX, Zhang C, Duan WB. Temporal variations in phosphorus fractions and phosphatase activities in rhizosphere and bulk soil during the development of Larix olgensis plantations. Journal of Plant Nutrition and Soil Science, 2016, 179: 67-77
|
[24] |
Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Procee-dings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006
|
[25] |
Lin YT, Lai Y, Tang SB, et al. Climatic and edaphic variables determine leaf C, N, P stoichiometry of deci-duous Quercus species. Plant and Soil, 2022, 474: 383-394
|
[26] |
任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 2007, 28(12): 2665-2673
|
[27] |
许淼平, 张欣怡, 李文杰, 等. 不同林龄刺槐叶片养分重吸收特征及其对土壤养分有效性的响应. 应用生态学报, 2020, 31(10): 3357-3364
|
[28] |
Osnas JLD, Lichstein JW, Reich PB, et al. Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science, 2013, 340: 741-744
|
[29] |
王晶媛. 麻栎林生态化学计量与养分循环的纬度格局及其影响机制. 硕士论文. 北京: 中国林业科学研究院, 2019
|
[30] |
Zhang H, Guo WH, Yu MK, et al. Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China. Science of the Total Environment, 2018, 618: 1-6
|
[31] |
Han WX, Tang LY, Chen YH, et al. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLoS One, 2013, 8(12): e83366
|
[32] |
Zhou LL, Addo-Danso SD, Wu PF, et al. Leaf resorption efficiency in relation to foliar and soil nutrient concentrations and stoichiometry of Cunninghamia lanceolata with stand development in southern China. Journal of Soils and Sediments, 2016, 16: 1448-1459
|
[33] |
Tang LY, Han WX, Chen YH, et al. Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China. Journal of Plant Ecology, 2013, 6: 408-417
|
[34] |
Xu MP, Zhu YF, Zhang SH, et al. Global scaling the leaf nitrogen and phosphorus resorption of woody species: Revisiting some commonly held views. Science of the Total Environment, 2021, 788: 14780
|
[35] |
邢雪荣, 韩兴国, 陈灵芝. 植物养分利用效率研究综述. 应用生态学报, 2000, 11(5): 785-790
|
[36] |
See CR, Yanai RD, Fisk MC, et al. Soil nitrogen affects phosphorus recycling: Foliar resorption and plant-soil feedbacks in a northern hardwood forest. Eco-logy, 2015, 96: 2488-2498
|
[37] |
周丽丽, 钱瑞玲, 李树斌, 等. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征. 应用生态学报, 2019, 30(7): 2320-2328
|
[38] |
鞠雯, 黄志群, 傅彦榕, 等. 亚热带幼林树木功能性状与叶片氮磷重吸收率的关系. 应用生态学报, 2022, 33(12): 3229-3236
|
[39] |
Wang ZN, Lu JY, Yang M, et al. Stoichiometric cha-racteristics of carbon, nitrogen, and phosphorus in leaves of differently aged lucerne (Medicago sativa) stands. Frontiers in Plant Science, 2015, 6: 1062
|