应用生态学报 ›› 2023, Vol. 34 ›› Issue (11): 3144-3156.doi: 10.13287/j.1001-9332.202311.010
叶俊龙1, 郭梁2, 赵璐峰1, 唐建军1, 胡亮亮1,3*, 陈欣1
收稿日期:
2023-05-10
修回日期:
2023-09-23
出版日期:
2023-11-15
发布日期:
2024-05-15
通讯作者:
*E-mail: zjuhull@126.com
作者简介:
叶俊龙, 男, 1996年生, 博士研究生。主要从事农业生态学与植物功能性状研究。E-mail: 1216208499@qq.com
基金资助:
YE Junlong1, GUO Liang2, ZHAO Lufeng1, TANG Jianjun1, HU Liangliang1,3*, CHEN Xin1
Received:
2023-05-10
Revised:
2023-09-23
Online:
2023-11-15
Published:
2024-05-15
摘要: 植物功能性状对群落形成和生态系统功能有重要影响,与自然生态系统不同,农业生态系统受自然条件和人工管理的共同影响,植物(即作物)功能性状是自然选择和人工选择的结果。本文聚焦作物功能性状特征,基于性状的农业生态系统研究方法,以及功能性状在农业中的应用3个方面,回顾了功能性状研究发展历程,阐述了驯化对作物性状权衡的影响,群落功能结构与农业生态系统服务的关系,以及农田杂草管理、覆盖作物和间作系统中功能性状的应用。指出将更多的农业生态系统和作物种类纳入研究、建立作物功能性状数据库和注重农业生态系统的多功能性是未来作物功能性状的研究方向。
叶俊龙, 郭梁, 赵璐峰, 唐建军, 胡亮亮, 陈欣. 农业生态系统植物功能性状研究进展[J]. 应用生态学报, 2023, 34(11): 3144-3156.
YE Junlong, GUO Liang, ZHAO Lufeng, TANG Jianjun, HU Liangliang, CHEN Xin. Research progress on plant functional traits in agroecosystems.[J]. Chinese Journal of Applied Ecology, 2023, 34(11): 3144-3156.
[1] Violle C, Navas ML, Vile D, et al. Let the concept of trait be functional. Oikos, 2007, 116: 882-892 [2] Garnier E, Cortez J, Billes G, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85: 2630-2637 [3] McGill BJ, Enquist BJ, Weiher E, et al. Rebuilding community ecology from functional traits. Trends in Eco-logy & Evolution, 2006, 21: 178-185 [4] de Bello F, Lavorel S, Díaz S, et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 2010, 19: 2873-2893 [5] Lohbeck M, Winowiecki L, Aynekulu E, et al. Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa. Journal of Applied Ecology, 2018, 55: 59-68 [6] Drenovsky RE, Grewell BJ, D’antonio CM, et al. A functional trait perspective on plant invasion. Annals of Botany, 2012, 110: 141-153 [7] Foley JA, Ramankutty N, Brauman KA, et al. Solutions for a cultivated planet. Nature, 2011, 478: 337-342 [8] Tomich TP, Brodt S, Ferris H, et al. Agroecology: A review from a global-change perspective. Annual Review of Environment and Resources, 2011, 36: 193-222 [9] Martin AR, Isaac ME, Manning P. Plant functional traits in agroecosystems: A blueprint for research. Journal of Applied Ecology, 2015, 52: 1425-1435 [10] Garnier E, Navas ML. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology: A review. Agronomy for Sustainable Development, 2012, 32: 365-399 [11] Wood SA, Karp DS, Declerck F, et al. Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends in Ecology & Evolution, 2015, 30: 531-539 [12] Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 1977, 111: 1169-1194 [13] Diaz S, Cabido M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends in Eco-logy & Evolution, 2001, 16: 646-655 [14] Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 2002, 16: 545-556 [15] Cornelissen JHC, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51: 335-380 [16] Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827 [17] Díaz S, Lavorel S, de Bello F, et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 20684-20689 [18] de Bello F, Thuiller W, Leps J, et al. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science, 2009, 20: 475-486 [19] Schleuter D, Daufresne M, Massol F, et al. A user’s guide to functional diversity indices. Ecological Monographs, 2010, 80: 469-484 [20] Gunton RM, Petit S, Gaba S. Functional traits relating arable weed communities to crop characteristics. Journal of Vegetation Science, 2011, 22: 541-550 [21] Kattge J, Diaz S, Lavorel S, et al. TRY: A global database of plant traits. Global Change Biology, 2011, 17: 2905-2935 [22] Pérez-Harguindeguy N, Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61: 167-234 [23] Damour G, Dorel M, Quoc HT, et al. A trait-based characterization of cover plants to assess their potential to provide a set of ecological services in banana cropping systems. European Journal of Agronomy, 2014, 52: 218-228 [24] Brooker RW, Bennett AE, Cong WF, et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206: 107-117 [25] Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 2014, 102: 275-301 [26] Damour G, Navas ML, Garnier E, et al. A revised trait-based framework for agroecosystems including decision rules. Journal of Applied Ecology, 2017, 55: 12-24 [27] Freschet GT, Pages L, Iversen CM, et al. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification, sampling, proces-sing and trait measurements. New Phytologist, 2021, 232: 973-1122 [28] 宋贺, 于鸿莹, 陈莹婷, 等. 北京植物园不同功能型植物叶经济谱. 应用生态学报, 2016, 27(6): 1861-1869 [29] Niinemets U. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 2015, 205: 79-96 [30] Siefert A, Violle C, Chalmandrier L, et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18: 1406-1419 [31] Martin AR, Hale CE, Cerabolini BEL, et al. Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB Plants, 2018, 10: ply006 [32] Xiong D, Flexas J. Leaf economics spectrum in rice: Leaf anatomical, biochemical, and physiological trait trade-offs. Journal of Experimental Botany, 2018, 69: 5599-5609 [33] Martin AR, Rapidel B, Roupsard O, et al. Intraspecific trait variation across multiple scales: The leaf economics spectrum in coffee. Functional Ecology, 2017, 31: 604-612 [34] Hayes FJ, Buchanan SW, Coleman B, et al. Intraspecific variation in soy across the leaf economics spectrum. Annals of Botany, 2019, 123: 107-120 [35] Weemstra M, Mommer L, Visser EJW, et al. Towards a multidimensional root trait framework: A tree root review. New Phytologist, 2016, 211: 1159-1169 [36] Isaac ME, Martin AR, De Melo Virginio Filho E, et al. Intraspecific trait variation and coordination: Root and leaf economics spectra in coffee across environmental gradients. Frontiers in Plant Science, 2017, 8: 1196 [37] Roucou A, Violle C, Fort F, et al. Shifts in plant functional strategies over the course of wheat domestication. Journal of Applied Ecology, 2018, 55: 25-37 [38] Milla R, Osborne CP, Turcotte MM, et al. Plant domestication through an ecological lens. Trends in Ecology & Evolution, 2015, 30: 463-469 [39] Borden KA, Isaac ME. Management strategies differen-tially affect root functional trait expression in cocoa agroforestry systems. Agronomy for Sustainable Development, 2019, 39: 21 [40] Martin AR, Hayes FJ, Borden KA, et al. Integrating nitrogen fixing structures into above- and belowground functional trait spectra in soy (Glycine max). Plant and Soil, 2019, 440: 53-69 [41] Fulthorpe R, Marin AR, Isaac ME. Root endophytes of coffee (Coffea arabica): Variation across climatic gradients and relationships with functional traits. Phytobiomes Journal, 2020, 4: 27-39 [42] Wen ZH, Li HB, Shen, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist, 2019, 223: 882-895 [43] Honvault N, Houben D, Nobile C, et al. Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. Plant and Soil, 2021, 461: 137-150 [44] Larson JE, Funk JL. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytologist, 2016, 210: 827-838 [45] He N, Li Y, Liu C, et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 2020, 35: 908-918 [46] Li Y, Liu CC, Xu L, et al. Leaf trait networks based on global data: Representing variation and adaptation in plants. Frontiers in Plant Science, 2021, 12: 710530 [47] Meyer RS, Duval AE, Jensen HR. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytologist, 2012, 196: 29-48 [48] Garibaldi LA, Aizen MA, Saez A, et al. The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Functional Ecology, 2021, 35: 1998-2011 [49] Cunniff J, Wilkinson S, Charles M, et al. Functional traits differ between cereal crop progenitors and other wild grasses gathered in the Neolithic Fertile Crescent. PLoS One, 2014, 9(1): e87586 [50] Milla R, Morente-Lopez J, Alonso-Rodrigo JM, et al. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proceedings of the Royal Society B-Biological Sciences, 2014, 281: 20141429 [51] Faucon MP, Houben D, Lambers H. Plant functional traits: Soil and ecosystem services. Trends in Plant Science, 2017, 22: 385-394 [52] Grime JP. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 1998, 86: 902-910 [53] Petchey OL, Gaston KJ. Functional diversity: Back to basics and looking forward. Ecology Letters, 2006, 9: 741-758 [54] 韩涛涛, 唐玄, 任海, 等. 群落/生态系统功能多样性研究方法及展望. 生态学报, 2021, 41(8): 3286-3295 [55] Buchanan SW, Baskerville M, Oelbermann M, et al. Plant diversity and agroecosystem function in riparian agroforests: Providing ecosystem services and land-use transition. Sustainability, 2020, 12: 568 [56] Cadotte MW, Cavender-Bares J, Tilman D, et al. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One, 2009, 4(5): e5695 [57] Flynn DFB, Mirotchnick N, Jain M, et al. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology, 2011, 92: 1573-1581 [58] Gaba S, Lescourret F, Boudsocq S, et al. Multiple cropping systems as drivers for providing multiple ecosystem services: From concepts to design. Agronomy for Sustainable Development, 2014, 35: 607-623 [59] Hanisch M, Schweiger O, Cord AF, et al. Plant functional traits shape multiple ecosystem services, their trade-offs and synergies in grasslands. Journal of Applied Ecology, 2020, 57: 1535-1550 [60] Martin AR, Isaac ME. Functional traits in agroecology: Advancing description and prediction in agroecosystems. Journal of Applied Ecology, 2018, 55: 5-11 [61] dos Santos D, Joner F, Shipley B, et al. Crop functional diversity drives multiple ecosystem functions during early agroforestry succession. Journal of Applied Ecology, 2021, 58: 1718-1727 [62] Kuester A, Conner JK, Culley T, et al. How weeds emerge: A taxonomic and trait-based examination using United States data. New Phytologist, 2014, 202: 1055-1068 [63] Gabriel D, Thies C, Tscharntke T. Local diversity of arable weeds increases with landscape complexity. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7: 85-93 [64] Petit S, Boursault A, Le Guilloux M, et al. Weeds in agricultural landscapes: A review. Agronomy for Sustai-nable Development, 2011, 31: 309-317 [65] Gaba S, Perronne R, Fried G, et al. Response and effect traits of arable weeds in agro-ecosystems: A review of current knowledge. Weed Research, 2017, 57: 123-147 [66] Moles AT, Westoby M. Seed size and plant strategy across the whole life cycle. Oikos, 2006, 113: 91-105 [67] Ciaccia C, Martinez LA, Testani E, et al. Weed functional diversity as affected by agroecological service crops and no-till in a Mediterranean organic vegetable system. Plants, 2020, 9: 689 [68] Pakeman RJ, Brooker RW, Karley AJ, et al. Increased crop diversity reduces the functional space available for weeds. Weed Research, 2020, 60: 121-131 [69] Barberi P, Bocci G, Carlesi S, et al. Linking species traits to agroecosystem services: A functional analysis of weed communities. Weed Research, 2018, 58: 76-88 [70] Villora RA, Plaza EH, Navarrete L, et al. Climate and tillage system drive weed communities’ functional diversity in a Mediterranean cereal-legume rotation. Agriculture, Ecosystems & Environment, 2019, 28: 106574 [71] 蹇述莲, 李书鑫, 刘胜群, 等. 覆盖作物及其作用的研究进展. 作物学报, 2022, 48(1): 1-14 [72] Blanco-Canqui H, Shaver TM, Lindquist JL, et al. Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy Journal, 2015, 107: 2449-2474 [73] Christina M, Negrier A, Marnotte P, et al. A trait-based analysis to assess the ability of cover crops to control weeds in a tropical island. European Journal of Agronomy, 2021, 128: 126316 [74] Damour G, Quoc HT, Tardy F, et al. A trait-based approach for the choice of cover crops in banana cropping systems: Theoretical developments and practical applications. Acta Horticulturae, 2018, 1196: 33-39 [75] 薛敬荣. 利用功能性状途径研究绿肥种类与数量对土壤线虫群落的影响. 硕士论文. 南京: 南京农业大学, 2020 [76] Finney DM, Kaye JP. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. Journal of Applied Ecology, 2017, 54: 509-517 [77] Blesh J. Functional traits in cover crop mixtures: Biolo-gical nitrogen fixation and multifunctionality. Journal of Applied Ecology, 2017, 55: 38-48 [78] Ranaldo M, Carlesi S, Costanzo A, et al. Functional diversity of cover crop mixtures enhances biomass yield and weed suppression in a Mediterranean agroecosystem. Weed Research, 2019, 60: 96-108 [79] Herrick E, Blesh J. Intraspecific trait variation improves understanding and management of cover crop outcomes. Ecosphere, 2021, 12: e03817 [80] Li L, Tilman D, Lambers H, et al. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203: 63-69 [81] Malezieux E. Designing cropping systems from nature. Agronomy for Sustainable Development, 2012, 32: 15-29 [82] Litrico I, Violle C. Diversity in plant breeding: A new conceptual framework. Trends in Plant Science, 2015, 20: 604-613 [83] Hillerislambers J, Adler PB, Harpole WS, et al. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 227-248 [84] Kraft NJ, Godoy O, Levine JM. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 797-802 [85] Louarn G, Barillot R, Combes D, et al. Towards intercrop ideotypes: Non-random trait assembly can promote overyielding and stability of species proportion in simulated legume-based mixtures. Annals of Botany, 2020, 126: 671-685 [86] Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412: 72-76 [87] 李春杰. 种内/种间互作调控小麦/蚕豆间作体系作物生长与氮磷吸收的机制. 博士论文. 北京: 中国农业大学, 2018 [88] Huang MJ, Liu X, Cadotte MW, et al. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos, 2020, 129: 1185-1195 [89] Yang H, Xu HS, Zhang WP, et al. Overyielding is accounted for partly by plasticity and dissimilarity of crop root traits in maize/legume intercropping systems. Functional Ecology, 2022, 36: 2163-2175 [90] Li SW, van Der Werf W, Zhu JQ, et al. Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping. Journal of Experimental Botany, 2021, 72: 3630-3646 [91] Chacon-Labella J, Palacios PG, Matesanz S, et al. Plant domestication disrupts biodiversity effects across major crop types. Ecology Letters, 2019, 22: 1472-1482 [92] Bittebiere AK, Saiz H, Mony C. New insights from multidimensional trait space responses to competition in two clonal plant species. Functional Ecology, 2019, 33: 297-307 [93] Hart SP, Schreiber SJ, Levine JM. How variation between individuals affects species coexistence. Ecology Letters, 2016, 19: 825-838 [94] Gruber K. The living library. Nature, 2017, 544: S8-S10 [95] 米湘成, 王绪高, 沈国春, 等. 中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望. 生物多样性, 2022, 30(10): 211-233 [96] Dore T, Makowski D, Malezieux E, et al. Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. European Journal of Agronomy, 2011, 34: 197-210 |
[1] | 巴晓博, 隋鑫, 刘鸣达, 解宏图, 梁超, 鲍雪莲. 东北黑土区覆盖作物-玉米间作保护性耕作的生态系统服务价值 [J]. 应用生态学报, 2023, 34(7): 1883-1891. |
[2] | 李文慧, 林妍敏, 南雄雄, 王芳, 朱丽珍. 果树-覆盖作物可持续种植体系土壤碳氮固存及其影响因素 [J]. 应用生态学报, 2023, 34(2): 471-480. |
[3] | 顾嘉诚, 王文敏, 王振, 李鲁华, 蒋贵菊, 王家平, 程志博. 玉米/大豆间作对根际土壤磷素生物有效性和微生物群落结构的影响 [J]. 应用生态学报, 2023, 34(11): 3030-3038. |
[4] | 陈俊南, 姜文洋, 昝志曼, 汪江涛, 郑宾, 刘领, 刘娟, 焦念元. 玉米和花生同垄间作对作物光合特性和间作优势的影响 [J]. 应用生态学报, 2023, 34(10): 2672-2682. |
[5] | 汪雪, 刘晓静, 王静, 童长春, 吴勇. 紫花苜蓿-燕麦连续间作下根系及土壤养分时空变化特征 [J]. 应用生态学报, 2023, 34(10): 2683-2692. |
[6] | 钱必长, 赵晨, 赵继浩, 赖华江, 李向东, 刘兆新. 不同花生棉花间作模式对花生生育后期生理特性及产量的影响 [J]. 应用生态学报, 2022, 33(9): 2422-2430. |
[7] | 王顶, 伊文博, 李欢, 陈林康, 赵平, 龙光强. 玉米间作和施氮对土壤微生物代谢功能多样性的影响 [J]. 应用生态学报, 2022, 33(3): 793-800. |
[8] | 王彦阁, 张博冉, 赵瑞. 种间作用对物种分布模拟的影响及建模方法 [J]. 应用生态学报, 2022, 33(3): 837-843. |
[9] | 蔡丽君, 张敬涛, 盖志佳, 刘婧琦, 郭震华, 赵桂范, 孟庆英. 东北三江平原覆盖作物种植效果 [J]. 应用生态学报, 2022, 33(10): 2736-2742. |
[10] | 米永伟, 龚成文, 邵武平, 顿志恒. 覆膜对高寒阴湿区当归土壤质量、植株生长和杂草发生的影响 [J]. 应用生态学报, 2021, 32(9): 3152-3158. |
[11] | 覃潇敏, 潘浩男, 肖靖秀, 汤利, 郑毅. 不同磷水平下玉米-大豆间作系统根系形态变化 [J]. 应用生态学报, 2021, 32(9): 3223-3230. |
[12] | 隋鑫, 霍海南, 鲍雪莲, 何红波, 张旭东, 梁超, 解宏图. 覆盖作物的种植现状及其对下茬作物生长和土壤环境影响的研究进展 [J]. 应用生态学报, 2021, 32(8): 2666-2674. |
[13] | 张雯, 韩守安, 王敏, 阿力木江·奥布力, 潘明启, 艾尔麦克·才卡斯木, 张平, 谢辉. 果树树冠遮阴对间作冬小麦籽粒灌浆的影响 [J]. 应用生态学报, 2021, 32(7): 2458-2468. |
[14] | 王亚君, 王腾琦, 侯志洁, 王学浩, 苏高杰, 刘义强, 周泉. 根系分泌物对紫云英油菜间作的响应 [J]. 应用生态学报, 2021, 32(5): 1783-1790. |
[15] | 柏文恋, 张梦瑶, 刘振洋, 郑毅, 汤利, 肖靖秀. 小麦与蚕豆间作体系根系形态与磷吸收的定量解析 [J]. 应用生态学报, 2021, 32(4): 1317-1326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||