[1] 吉庆凯, 王栋, 杨文宝, 等. 长期施磷对玉米-小麦轮作系统作物产量和磷素吸收及土壤磷积累的影响. 应用生态学报, 2021, 32(7): 2469-2476 [2] 王一锟, 蔡泽江, 冯固. 不同磷肥调控措施下红壤磷素有效性和利用率的变化. 土壤学报, 2023, 60(1): 235-246 [3] 蒋炳伸, 沈健林, 王娟, 等. 秸秆还田稻田土壤生物有效性磷及水稻磷吸收. 水土保持学报, 2020, 34(6): 309-317 [4] DeLuca TH, Glanville HC, Harris M, et al. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biology and Biochemistry, 2015, 88: 110-119 [5] Gao S, DeLuca TH. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biology and Biochemistry, 2018, 126: 144-150 [6] 胡怡凡, 刘佳坪, 王子楷, 等. 轮作提高土壤磷生物有效性改善后茬作物磷素营养. 植物营养与肥料学报, 2021, 27(8): 1305-1310 [7] Wang W, Chen Y, Zhang F, et al. Cotton-maize intercropping increases rhizosphere soil phosphorus bioavaila-bility by regulating key phosphorus cycling genes in northwest China. Applied Soil Ecology, 2023, 182: 104734 [8] Song YN, Zhang FS, Marschner P, et al. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils, 2007, 43: 565-574 [9] Yang Z, Zhang Y, Wang Y, et al. Intercropping regulation of soil phosphorus composition and microbially dri-ven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Research, 2022, 287: 108666 [10] Latati M, Blavet D, Alkama N, et al. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant and Soil, 2014, 385: 181-191 [11] 骆妍妃, 覃潇敏, 农玉琴, 等. 不同磷水平下玉米-大豆间作对红壤无机磷组分及有效磷的影响. 土壤, 2022, 54(1): 72-79 [12] 王瑞雪, 苏丽珍, 张连娅, 等. 玉米与大豆间作土壤生物学活性对磷有效性影响的定量解析. 中国生态农业学报, 2022, 30(7): 1155-1163 [13] 张德闪, 王宇蕴, 汤利, 等. 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系. 植物营养与肥料学报, 2013, 19(1): 127-133 [14] Tian X, Wang C, Bao X, et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 2019, 436: 173-192 [15] 赵雅姣, 刘晓静, 吴勇, 等. 西北半干旱区紫花苜蓿-小黑麦间作对根际土壤养分和细菌群落的影响. 应用生态学报, 2020, 31(5): 1645-1652 [16] Sun B, Gao Y, Wu X, et al. The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant and Soil, 2020, 447: 117-133 [17] Barillot CDC, Sarde CO, Bert V, et al. A standardized method for the sampling of rhizosphere and rhizoplane soil bacteria associated to a herbaceous root system. Annals of Microbiology, 2013, 63: 471-476 [18] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2008: 30-281 [19] Drummond L, Maher W. Determination of phosphorus in aqueous solution via formation of the phosphoantimonylmolybdenum blue complex: Reexamination of optimum conditions for the analysis of phosphate. Analytica Chi-mica Acta, 1995, 302: 69-74 [20] 张恩和, 黄高宝, 黄鹏. 不同供磷水平下粮豆间套种植对根系分布和根际效应的影响. 草业学报, 1999, 8(3): 35-38 [21] Yang F, Liao D, Wu X, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203: 16-23 [22] Zaeem M, Nadeem M, Pham TH, et al. The potential of corn-soybean intercropping to improve the soil health status and biomass production in cool climate boreal ecosystems. Scientific Reports, 2019, 9: 13148 [23] Zhang Y, Sun Z, Su Z, et al. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crops Research, 2022, 282: 108523 [24] Betencourt E, Duputel M, Colomb B, et al. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemistry, 2012, 46: 181-190 [25] 蔡观, 胡亚军, 王婷婷, 等. 基于生物有效性的农田土壤磷素组分特征及其影响因素分析. 环境科学, 2017, 38(4): 1606-1612 [26] Cao D, Lan Y, Chen W, et al. Successive applications of fertilizers blended with biochar in the soil improve the availability of phosphorus and productivity of maize (Zea mays L.). European Journal of Agronomy, 2021, 130: 126344 [27] Li H, Luo L, Tang B, et al. Dynamic changes of rhizosphere soil bacterial community and nutrients in cad-mium polluted soils with soybean-corn intercropping. BMC Microbiology, 2022, 22: 57 [28] Dai Z, Su W, Chen H, et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology, 2018, 24: 3452-3461 [29] Eichorst SA, Breznak JA, Schmidt TM. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Applied and Environmental Microbiology, 2007, 73: 2708-2717 [30] Li R, Khafipour E, Krause DO, et al. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One, 2012, 7(12): e51897 [31] Özbolat O, Sánchez-Navarro V, Zornoza R, et al. Long-term adoption of reduced tillage and green manure improves soil physicochemical properties and increases the abundance of beneficial bacteria in a Mediterranean rainfed almond orchard. Geoderma, 2023, 429: 116218 [32] Daniel LMC, Pozzi E, Foresti E, et al. Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor. Bioresource Technology, 2009, 100: 1100-1107 [33] Liu L, Gao Z, Yang Y, et al. Long-term high-P fertilizer input shifts soil P cycle genes and microorganism communities in dryland wheat production systems. Agriculture, Ecosystems and Environment, 2023, 342: 108226 [34] Wakelin S, Mander C, Gerard E, et al. Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures. Applied Soil Ecology, 2012, 61: 40-48 [35] Liu Z, Shang H, Han F, et al. Improvement of nitrogen and phosphorus availability by Pseudoalteromonas sp. during salt-washing in saline-alkali soil. Applied Soil Ecology, 2021, 168: 104117 [36] Pasek MA, Sampson JM, Atlas Z. Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 15468-15473 [37] Grierson PF, Comerford NB, Jokela EJ. Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida Spodosol. Soil Biology and Biochemistry, 1998, 30: 1323-1331 [38] He YH, Wu ZS, Wang WF, et al. Bacterial community and phosphorus species changes in pepper rhizosphere soils after Pseudomonas putida Rs-198 inoculation. Rhizosphere, 2019, 11: 100164 [39] Cheng J, Zhang Y, Wang H, et al. Sand-fixation plantation type affects soil phosphorus transformation microbial community in a revegetation area of Horqin Sandy Land, Northeast China. Ecological Engineering, 2022, 180: 106644 |