[1] Phillips RP, Meier IC, Bernhardt ES, et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 2012, 15: 1042-1049 [2] 朱永官, 沈仁芳, 贺纪正, 等. 中国土壤微生物组: 进展与展望. 中国科学院院刊, 2017, 32 (6): 554-565 [3] Crow SE, Lajtha K, Bowden RD, et al. Increased coni-ferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology and Mana-gement, 2009, 258: 2224-2232 [4] Schmidt MW, Torn MS, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56 [5] 李超男, 李家宝, 李香真. 贡嘎山海拔梯度上不同植被类型土壤甲烷氧化菌群落结构及多样性. 应用生态学报, 2017, 28(3): 805-814 [6] 何中声, 王紫薇, 朱静, 等. 戴云山南坡不同海拔森林土壤微生物群落结构特征和影响因素. 环境科学, 2022, 43(5): 2802-2811 [7] 曹丽花, 刘合满, 杨红, 等. 色季拉山不同海拔土壤微生物及真菌群落组成特征. 水土保持学报, 2022, 36(6): 371-378 [8] 李益, 冯秀秀, 赵发珠, 等. 秦岭太白山不同海拔锐齿栎林土壤微生物群落的变化特征. 林业科学, 2021, 57(2): 22-31 [9] 马进鹏, 庞丹波, 陈林, 等. 贺兰山不同海拔植被下土壤微生物群落结构特征. 生态学报, 2022, 42(2): 667-676 [10] 杨虎, 王佩瑶, 李小伟, 等. 贺兰山东坡不同植被类型的土壤真菌多样性及其群落结构. 生态环境学报, 2022, 31(2): 239-247 [11] 杨智姣, 温晨, 杨磊, 等. 半干旱黄土小流域不同恢复方式对生态系统多功能性的影响. 生态学报, 2020, 40(23): 8606-8617 [12] Frostegard A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22: 59-65 [13] Jiang YJ, Sun B, Jin C, et al. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology and Biochemistry, 2013, 60: 1-9 [14] Schindlbacher A, Rodler A, Kuffner M, et al. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry, 2011, 43: 1417-1425 [15] Bååth E, Anderson TH. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry, 2003, 35: 955-963 [16] Brockett BFT, Prescott CE, Grayston SJ. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 2012, 44: 9-20 [17] Hammesfahr U, Heuer H, Manzke B, et al. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biology and Biochemistry, 2008, 40: 1583-1591 [18] Pollierer MM, Ferlian O, Scheu S. Temporal dynamics and variation with forest type of phospholipid fatty acids in litter and soil of temperate forests across regions. Soil Biology and Biochemistry, 2015, 91: 248-257 [19] Camenzind T, Grenz KP, Lehmann J, et al. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecology Letters, 2021, 24: 208-218 [20] 马书琴, 王小丹, 王荷, 等. 藏北高寒草地土壤磷脂脂肪酸指纹特征及其与土壤化学性质的关系. 生态环境学报, 2017, 26(9): 1480-1487 [21] Dang P, Gao Y, Liu JL, et al. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Science of the Total Environment, 2018, 630: 171-180 [22] Shen CC, Gunina A, Luo Y, et al. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environmental Microbiology, 2020, 22: 3287-3301 [23] Lekberg Y, Bååth E, Frostegård Å, et al. Fatty acid 16:1ω5 as a proxy for arbuscular mycorrhizal fungal biomass: Current challenges and ways forward. Biology and Fertility of Soils, 2022, 58: 835-842 [24] 吴则焰, 林文雄, 陈志芳, 等. 武夷山不同海拔植被带土壤微生物 PLFA分析. 林业科学, 2014, 50(7): 105-112 [25] 刘秉儒, 张秀珍, 胡天华, 等. 贺兰山不同海拔典型植被带土壤微生物多样性. 生态学报, 2013, 33(22): 7211-7220 [26] Lange M, Eisenhauer N, Sierra CA, et al. Plant diversity increases soil microbial activity and soil carbon sto-rage. Nature Communications, 2015, 6: 6707 [27] Kramer C, Gleixner G. Variable use of plant and soil derived carbon by microorganisms in agricultural soils. Soil Biology and Biochemistry, 2006, 38: 3267-3278 [28] Chen LY, Liu L, Qin SQ, et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 2019, 10: 5112 [29] 邱雪丽. 改变碳输入对亚热带-暖温带气候过渡区三种林型土壤碳组分的影响. 硕士论文. 开封: 河南大学, 2019 [30] 丁爽, 魏圣钊, 陈真亮, 等. 中国西南典型森林土壤微生物在不同土壤深度下的变化特征. 应用生态学报, 2023, 34(3): 614-622 [31] 谷晓楠. 长白山西坡高山亚高山土壤微生物及酶活性随海拔的分布特征及其对氮沉降的响应. 硕士论文. 长春: 东北师范大学, 2018 [32] Zhou GY, Zhou XH, Liu RQ, et al. Soil fungi and fine root biomass mediate drought induced reductions in soil respiration. Functional Ecology, 2022, 34: 2634-2643 [33] 莫帅豪, 郑粉莉, 冯志珍, 等. 典型黑土区侵蚀-沉积对土壤微生物数量空间分布的影响. 应用生态学报, 2022, 33(3): 685-693 [34] Moore-Kucera J, Dick RP. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas fir chronosequence. Microbial Ecology, 2008, 55: 500-511 [35] Liu R, Zhang Y, Hu XF, et al. Litter manipulation effects on microbial communities and enzymatic activities vary with soil depth in a subtropical Chinese fir plantation. Forest Ecology and Management, 2021, 480: 118641 [36] 马婧婧, 刘耘华, 盛建东, 等. 新疆草地优势种植物相对生物量沿海拔梯度变化特征. 草业学报, 2021, 30(8): 25-35 [37] 蔡锰柯, 韩海荣, 程小琴, 等. 山西太岳山不同林龄华北落叶松林土壤微生物群落结构特征. 北京林业大学学报, 2022, 44(5): 86-93 [38] 丁凯, 张毓婷, 张俊红, 等. 不同密度杉木林对林下植被和土壤微生物群落结构的影响. 植物生态学报, 2021, 45(1): 62-73 [39] 李聪, 吕晶花, 陆梅, 等. 文山国家级自然保护区不同海拔地带性植被的土壤微生物生物量碳氮分布特征. 林业科学, 2022, 58(3): 20-30 [40] 宋鸽, 李晓杰, 王全成, 等. 杉木人工林土壤微生物生物量和碳源利用能力对模拟氮沉降和干旱的响应. 应用生态学报, 2022, 33(9): 2388-2396 [41] 彭岳林, 蔡晓布, 薛会英. 退化高寒草原土壤微生物变化特性研究. 西北农业学报, 2007, 16(4): 112-115 [42] 张倩. 丹江口库区土地利用变化对土壤微生物学特征的影响. 博士论文. 武汉: 中国科学院武汉植物园, 2019 [43] 黄幸然, 郭萍萍, 吴旺旺, 等. 模拟氮沉降增加对不同树种土壤微生物群落结构的影响. 生态学杂志, 2016, 35(6): 1420-1426 [44] 韦应莉, 曹文侠, 李建宏, 等. 不同放牧与围封高寒灌丛草地土壤微生物群落结构PLFA分析. 生态学报, 2018, 38(13): 4897-4908 [45] Liu SE, Wang H, Tian P, et al. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biology and Biochemistry, 2020, 144: 107763 [46] 张军芳. 我国典型山地土壤微生物群落结构特征及环境影响因子研究. 硕士论文. 武汉: 中国地质大学, 2018 [47] Helfenstein JL, Tamburini F, Sperber CV, et al. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications, 2018, 9: 3226 |