[1] Rui YC, Wang YF, Chen CR, et al. Warming and gra-zing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 2012, 357: 73-87 [2] 陈美领, 陈浩, 毛庆功, 等. 氮沉降对森林土壤磷循环的影响. 生态学报, 2016, 36(16): 4965-4976 [3] Lang F, Bauhus J, Frossard E, et al. Phosphorus in forest ecosystems: New insights from an ecosystem nutrition perspective. Journal of Plant Nutrition and Soil Science, 2016, 179: 129-135 [4] 赵琼, 曾德慧. 陆地生态系统磷素循环及其影响因素. 植物生态学报, 2005, 29(1): 153-163 [5] 张磊, 贾淑娴, 李啸灵, 等. 亚热带米槠天然林凋落物和根系输入变化对土壤磷组分的影响. 生态学报, 2022, 42(2): 656-666 [6] Bünemann EK, Prusisz B, Ehlers K. Characterization of phosphorus forms in soil microorganisms// Bünemann EK, Oberson A, Frossard E, eds. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Heidelberg: Springer, 2011: 37-57 [7] 陈立新, 乔璐, 段文标, 等. 温带森林磷沉降-水系统输出-迁移动态特征及对土壤磷影响. 土壤学报, 2012, 49(3): 454-464 [8] Markaki Z, Loÿe-Pilot MD, Violaki K, et al. Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. Marine Chemistry, 2010, 120: 187-194 [9] Chen H, Gurmesa GA, Liu L, et al. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China. PLoS One, 2014, 9: e99018 [10] Ao GKL, Feng JG, Han MG, et al. Responses of root and soil phosphatase activity to nutrient addition differ between primary and secondary tropical montane forests. Rhizosphere, 2022, 24: 100610 [11] 杜雨潭, 陈金磊, 李雷达, 等. 亚热带不同植被恢复林地凋落物层碳、氮、磷化学计量特征. 中南林业科技大学学报, 2020, 40(2): 108-119 [12] Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 2019, 12: 46-53 [13] Beidler KV, Oh YE, Pritchard SG, et al. Mycorrhizal roots slow the decay of belowground litters in a temperate hardwood forest. Oecologia, 2021, 197: 743-755 [14] Long CY, Zhang Q, Chen Q, et al. Divergent controls on leaf and root litter decay linking to soil C, N, and P pools under a subtropical land-use change. Ecosystems, 2023, 26: 1209-1223 [15] Lin DG, Yu H, Lian F, et al. Quantifying the hazardous impacts of human-induced land degradation on terrestrial ecosystems: A case study of karst areas of south China. Environmental Earth Sciences, 2016, 75: 1127 [16] Yuan DX. On the Karst Ecosystem. Acta Geologica Sinica, 2001, 75: 336-338 [17] Tong X, Brandt M, Yue Y, et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 2018, 1: 44-50 [18] Zhang X, Yue Y, Tong X, et al. Eco-engineering controls vegetation trends in southwest China karst. Science of the Total Environment, 2021, 770: 145160 [19] Taboada MA, Barbosa OA, Rodríguez MB, et al. Mechanisms of aggregation in a silty loam under different simulated management regimes. Geoderma, 2004, 123: 233-244 [20] 刘淑娟, 张伟, 王克林, 等. 桂西北喀斯特峰丛洼地表层土壤养分时空分异特征. 生态学报, 2011, 31(11): 3036-3043 [21] 何铁光, 俞月凤, 蒙炎成, 等. 桂西北喀斯特区不同退化程度石灰土有机碳与养分剖面分布特征. 水土保持研究, 2019, 26(4): 13-18 [22] 刘洢杋, 杨峻晖, 刘家齐, 等. 喀斯特和非喀斯特森林植物磷含量及土壤无机磷分级特征比较. 南方农业学报, 2023, 54(1): 110-118 [23] Wu YJ, Tian X, ZhA case study of initial vegetation restoration affecting the occurrence characteristics of phosphorus in karst geomorphology in southwest China. Sustainability, 2022, 14: 12277 [24] 广西统计局. 广西统计年鉴-第八章资源与环境. 北京: 中国统计出版社, 2022 [25] Pan FJ, Liang YM, Wang KL, et al. Responses of fine root functional traits to soil nutrient limitations in a karst ecosystem of southwest China. Forests, 2018, 9: 743 [26] Suhaili NS, Mhd Hatta S, James D, et al. Soils carbon stocks and litterfall fluxes from the Bornean tropical montane forests, Sabah, Malaysia. Forests, 2021, 12: 1621 [27] Cheng SD, Ke GG, Li ZB, et al. Soil available phosphorus investigated for spatial distribution and effect indicators resulting from ecological construction on the Loess Plateau, China. Sustainability, 2021, 13: 12572 [28] Huang WJ, Spohn M. Effects of long-term litter manipulation on soil carbon, nitrogen, and phosphorus in a temperate deciduous forest. Soil Biology and Biochemistry, 2015, 83: 12-18 [29] 邹佳何, 王海燕, 李成铭, 等. 长白山北坡不同林分类型细根-土壤CNP化学计量特征. 生态学杂志, 2023, http://kns.cnki.net/kcms/detail/21.1148.Q.20230525.1641.004.html [30] Chi GY, Zeng FP, Wang Y, et al. Phosphorus dynamics in litter-soil systems during litter decomposition in larch plantations across the chronosequence. Frontiers in Plant Science, 2022, 13: 1010458 [31] 左继超, 郑海金, 奚同行, 等. 自然降雨条件下红壤坡地磷素随径流垂向分层输出特征. 环境科学, 2017, 38(10): 4178-4186 [32] 杜有新, 潘根兴, 李恋卿, 等. 贵州中部喀斯特山地不同植被生态系统细根生态特征及养分储量. 应用生态学报, 2010, 21(8): 1926-1932 [33] Valdespino P, Romualdo R, Cadenazzi L, et al. Phosphorus cycling in primary and secondary seasonally dry tropical forests in Mexico. Annals of Forest Science, 2009, 66: 107 [34] An SS, Cheng Y, Huang YM, et al. Effects of revegetation on soil microbial biomass, enzyme activities, and nutrient cycling on the Loess Plateau in China. Restoration Ecology, 2012, 21: 600-607 [35] Ai L, Wu FZ, Fan XB, et al. Different effects of litter and root inputs on soil enzyme activities in terrestrial ecosystems. Applied Soil Ecology, 2023, 183: 104764 [36] Gao Y, He NP, Yu GR, et al. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China. Ecological Engineering, 2014, 67: 171-181 [37] 王瑞丽, 程瑞梅, 肖文发, 等. 三峡库区马尾松人工林细根生产和周转. 应用生态学报, 2012, 23(9): 2346-2352 [38] 魏鹏, 李贤伟, 范川, 等. 华西雨屏区香樟人工林土壤表层细根生物量和碳储量. 应用生态学报, 2013, 24(10): 2755-2762 [39] Chave J, Navarrete D, Almeida S, et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 2010, 7: 43-55 [40] Parsons SA, Valdez-Ramirez V, Congdon RA, et al. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region. Biogeosciences, 2014, 11: 5047-5056 |