[1] Sanderman J, Hengl T, Fiske GJ. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of Ame-rica, 2017, 114: 9575-9580 [2] Ma JY, Han Y, Ji SN, et al. Reducing soil organic carbon mineralization under moderate thinning magnifies the soil carbon sink in a Larix principis-rupprechtii plantation. Catena, 2022, 210: 105858 [3] Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105 [4] Wang BR, An SS, Liang C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 2021, 162: 108422 [5] Fabian J, Zlatanovic S, Mutz M, et al. Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality. ISME Journal, 2017, 11: 415-425 [6] Soares M, Rousk J. Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biology and Biochemistry, 2019, 131: 195-205 [7] Attermeyer K, Premke K, Hornick T, et al. Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats. Ecology, 2013, 94: 2754-2766 [8] Mou ZJ, Kuang LH, He LF, et al. Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests. Catena, 2021, 207: 105707 [9] Yang Y, Dou YX, Wang BR, et al. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry, 2022, 170: 108688 [10] Zhang K, Dang H, Tan S, et al. Change in soil organic carbon following the ‘Grain-for-Green' programme in China. Land Degradation and Development, 2010, 21: 13-23 [11] 闫丽娟, 王海燕, 李广, 等. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响. 水土保持学报, 2019, 33(5): 190-196, 204 [12] 张国平. 半干旱地区柠条造林技术. 现代园艺, 2022, 45(18): 34-36 [13] 闫佳兴, 石文凯, 韩海荣, 等. 晋北黄土丘陵沟壑区柠条锦鸡儿叶功能性状特征及环境响应. 生态学杂志, 2023, 42(7): 1595-1603 [14] 王永强, 吕雯, 马晓梅, 等. 宁南带状柠条林地根系及土壤水分养分分布特征. 西北林学院学报, 2023, 38(1): 42-49 [15] 杨雅丽, 马雪松, 解宏图, 等. 保护性耕作对土壤微生物群落及其介导的碳循环功能的影响. 应用生态学报, 2021, 32(8): 2675-2684 [16] Mulder VL, Lacoste M, Richer-de-Forges AC, et al. National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma, 2016, 263: 16-34 [17] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2008: 34-35 [18] Zhang X, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28: 1201-1206 [19] Joergensen RG. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 2018, 54: 559-568 [20] 林婉奇, 邹晓君, 佘汉基, 等. 山杜英人工林土壤有机碳和营养元素的垂直分布格局. 东北林业大学学报, 2019, 47(12): 55-59 [21] 聂铭, 杨裕然, 李振轮. 微生物胞内外pH稳态维持机制研究进展. 微生物学报, 2024, 64(1): 1-13 [22] 牛西午, 张强, 杨治平, 等. 柠条人工林对晋西北土壤理化性质变化的影响研究. 西北植物学报, 2003, 23(4): 628-632 [23] 程积民, 万惠娥, 王静, 等. 半干旱区柠条生长与土壤水分消耗过程研究. 林业科学, 2005, 41(2): 37-41 [24] Wu ZY, Wang NF, Hisano H, et al. Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnology Journal, 2019, 17: 836-845 [25] 赵杼祺, 胡振宏, 何鲜, 等. 森林木质残体微生物群落构建机制研究进展. 林业科学, 2023, doi: 10.11707/j.1001-7488.LYKX20220472 [26] 杨新民. 黄土高原灌木林地水分环境特性研究. 干旱区研究, 2001, 18(1): 8-13 [27] 梁燊, 刘亚斌, 石川, 等. 黄土区不同龄期灌木柠条锦鸡儿根系的分布特征及其固土护坡效果. 农业工程学报, 2023, 39(15): 114-124 [28] Hao HX, Di HY, Jiao X, et al. Fine roots benefit soil physical properties key to mitigate soil detachment capacity following the restoration of eroded land. Plant and Soil, 2020, 446: 487-501 [29] 刘株秀, 刘俊杰, 胡晓婧, 等. 土壤剖面微生物群落分布规律研究进展. 土壤与作物, 2022, 11(2): 129-138 [30] 杨帆. 黄土高塬沟壑区植被恢复对土壤剖面水碳分布及微生物的影响. 博士论文. 北京: 中国科学院大学, 2022 [31] Prommer J, Walker TWN, Wanek W, et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 2020, 26: 669-681 [32] 张红娟, 张朝阳, 强磊. 柠条锦鸡儿根瘤菌及其共生固氮基因多样性. 西北农业学报, 2014, 23(10): 194-199 [33] Chen H, Dai Z, Veach AM, et al. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agriculture, Ecosystems and Environment, 2020, 293: 106841 [34] 张彬, 陈奇, 丁雪丽, 等. 微生物残体在土壤中的积累转化过程与稳定机理研究进展. 土壤学报, 2021, 59(6): 1479-1491 [35] 丁雪丽, 张旭东, 杨学明, 等. 免耕秸秆还田和传统耕作方式下东北黑土氨基糖态碳的积累特征. 土壤学报, 2012, 49(3): 535-543 [36] Vidal A, Klöffel T, Guigue J, et al. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms. Soil Biology and Biochemistry, 2021, 160: 108347 [37] 梁爱珍, 张晓平, 杨学明, 等. 耕作对东北黑土团聚体粒级分布及其稳定性的短期影响. 土壤学报, 2009, 46(1): 154-158 [38] Sae-Tun O, Bodner G, Rosinger C, et al. Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities. Applied Soil Ecology, 2022, 179: 104599 [39] Chen XB, Hu YJ, Xia YH, et al. Contrasting pathways of carbon sequestration in paddy and upland soils. Glo-bal Change Biology, 2021, 27: 2478-2490 [40] 何红波, 李晓波, 张威, 等. 葡萄糖和不同数量氮素供给对黑土氨基糖动态的影响. 土壤学报, 2010, 47(4): 760-766 |