[1] Piao SL, Wang XH, Park T, et al. Characteristics, drivers and feedbacks of global greening. Nature Review Earth & Environment, 2020, 1: 14-27 [2] Zhang M, Wang JM, Li SJ. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015. Journal of Cleaner Production, 2019, 232: 940-952 [3] 朴世龙, 岳超, 丁金枝, 等. 试论陆地生态系统碳汇在“碳中和”目标中的作用. 中国科学:地球科学, 2022, 52(7): 1419-1426 [4] Wang YM, Zhang ZX, Chen X. Quantifying influences of natural and anthropogenic factors on vegetation changes based on geodetector: A case study in the Poyang Lake Basin, China. Remote Sensing, 2021, 13: 5081 [5] Zhang ZX, Chang J, Xu CY, et al. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Science of the Total Environment, 2018, 635: 443-451 [6] 龙爽, 郭正飞, 徐粒, 等. 基于 Google Earth Engine 的中国植被覆盖度时空变化特征分析. 遥感技术与应用, 2020, 35(2): 326-334 [7] 张良侠, 樊江文, 张海燕, 等. 黄土高原地区生态脆弱性时空变化及其驱动因子分析. 环境科学, 2022, 43(9): 4902-4910 [8] 窦永静, 王让虎, 付含培, 等. 山西省植被NDVI时空变化及驱动力研究. 山西大学学报:自然科学版, 2023, 46(1): 244-255 [9] 刘庚, 毕如田, 禇雅红. 基于MODIS 影像的山西省植被指数分析. 测绘与空间地理信息, 2008(1): 43-45 [10] 宋晓静, 周淑琴, 荆耀栋, 等. 吕梁山植被时空分布规律及地形差异影响. 湖北农业科学, 2021, 60(5): 53-58 [11] 陈学兄, 毕如田, 张小军, 等. 太原市城区植被覆盖变化地形分异效应. 水土保持通报, 2020, 40(5): 299-309 [12] 曹会, 刘立文, 李雨珂, 等. 基于景观尺度的黄土丘陵区植被覆盖时空变化:以山西省晋城市为例. 地质与资源, 2022, 31(4): 530-538 [13] 刘立文, 徐立帅, 段永红, 等. 晋城市植被覆盖时空变化与地形效应耦合. 测绘与空间地理信息, 2021, 44(8): 1-6 [14] 王国芳, 毕如田, 张吴平, 等. 典型矿区植被覆盖度时空分布特征及影响因素. 生态学报, 2020, 40(17): 6046-6056 [15] 卫宇婷, 杨怀卿. 基于NDVI的近30 a来山西省植被动态变化特征及与气候因子间的关系分析. 山西农业科学, 2018, 46(8): 1354-1361 [16] 覃巧婷, 陈建军, 杨艳萍, 等. 黄河源植被时空变化及其对地形和气候的响应. 中国环境科学, 2021, 41(8): 3832-3841 [17] 王一, 郝利娜, 许强, 等. 2001—2019年黄土高原植被覆盖度时空演化特征及地理因子解析. 生态学报, 2023, 43(6): 2397-2407 [18] 刘静, 温仲明, 刚成诚. 黄土高原不同植被覆被类型NDVI对气候变化的响应. 生态学报, 2020, 40(2): 678-691 [19] 刘旻霞, 赵瑞东, 邵鹏, 等. 近15 a黄土高原植被覆盖时空变化及驱动力分析. 干旱区地理, 2018, 41(1): 99-108 [20] 李婷, 吕一河, 任艳姣, 等. 黄土高原植被恢复成效及影响因素. 生态学报, 2020, 40(23): 8593-8605 [21] 邓椿, 蒋晓辉, 聂桐, 等. 山西省植被覆盖度多因子探测特征与驱动力分析. 环境科学与技术, 2022, 45(2): 182-191 [22] 李梦华, 韩颖娟, 赵慧, 等. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析. 生态环境学报, 2022, 31(7): 1317-1325 [23] 武永利, 栾青, 赵永强, 等. 近25年山西植被指数时空变化特征分析. 生态环境, 2008, 17(6): 2330-2335 [24] 张茹, 程朋, 张珺, 等. 山西省植被覆盖变化及其影响因素研究. 西北师范大学学报:自然科学版, 2017, 53(6): 114-122 [25] Jiang HL, Xu X, Guan MX, et al. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Science of the Total Environment, 2020, 718: 134871 [26] Shi SY, Yu JJ, Wang F, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of the Total Environment, 2021, 755: 142419 [27] 徐勇, 郑志威, 郭振东, 等. 2000—2020年长江流域植被NDVI动态变化及影响因素探测. 环境科学, 2022, 43(7): 3730-3740 [28] Zheng ZH, Wu ZF, Chen YB, et al. Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years. Ecological Indicators, 2020, 119: 106847 [29] Huo H, Sun CP. Spatiotemporal variation and influencing factors of vegetation dynamics based on Geodetector: A case study of the northwestern Yunnan Plateau, China. Ecological Indicators, 2021, 130: 108005 [30] Mu XH, Song WJ, Gao Z, et al. Fractional vegetation cover estimation by using multi-angle vegetation index. Remote Sensing of Environment, 2018, 216: 44-56 [31] Li J, Wang JL, Zhang J, et al. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector. Ecological Indicators, 2022, 136: 108620 [32] 王晓蕾, 石守海. 基于GEE的黄河流域植被时空变化及其地形效应研究. 地球信息科学学报, 2022, 24(6): 1087-1098 [33] Fu BL, Yang WL, Yao H, et al. Evaluation of spatio-temporal variations of FVC and its relationship with climate change using GEE and Landsat images in Ganjiang River Basin. Geocarto International, 2022, 37: 13658-13688 [34] Masek JG, Wulder MA, Markham B, et al. Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 2020, 248: 111968 [35] Bai Y, Li SG, Liu MH, et al. Assessment of vegetation change on the Mongolian Plateau over three decades using different remote sensing products. Journal of Environmental Management, 2022, 317: 115509 [36] Peng SZ, Ding YX, Liu WZ, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11: 1931-1946 [37] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 2021, 13: 3907-3925 [38] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算. 资源科学, 2004, 26(4): 153-159 [39] 郭永强, 王乃江, 褚晓升, 等. 基于Google Earth Engine分析黄土高原植被覆盖变化及原因. 中国环境科学, 2019, 39(11): 4804-4811 [40] Wei YY, Sun SG, Liang D, et al. Spatial-temporal variations of NDVI and its response to climate in China from 2001 to 2020. International Journal of Digital Earth, 2022, 15: 1463-1484 [41] 方德泉, 胡宝清. 2000—2016年广西西江流域植被覆盖时空变化. 大众科技, 2019, 21(10): 28-31 [42] Tang ZX, Zhou ZX, Wang D, et al. Impact of vegetation restoration on ecosystem services in the Loess plateau: A case study in the Jinghe Watershed, China. Ecological Indicators, 2022, 142: 109183 [43] 王劲峰, 徐成东. 地理探测器:原理与展望. 地理学报, 2017, 72(1): 116-134 [44] 彭文甫, 张冬梅, 罗艳玫, 等. 自然因子对四川植被NDVI变化的地理探测. 地理学报, 2019, 74(9): 1758-1776 [45] Chen Y, Cao RY, Chen J, et al. A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky-Golay filter. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 174-190 [46] Claverie M, Ju JC, Masek JG, et al. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 2018, 219: 145-161 [47] 汪瑞. 阿克苏河灌区植被及湖泊生态需水量估算与特征分析研究. 硕士论文. 武汉: 华中师范大学, 2021 |