[1] Albrecht J, Peters MK, Schleuning M. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology and Evolution, 2021, 5: 1582-1593 [2] Gaston KJ. Global patterns in biodiversity. Nature, 2000, 405: 220-227 [3] Danyagri G, Baral SK, Pelletier G. Effects of distur-bance and site factors on sapling dynamics and species diversity in northern hardwood stands. Forest Ecology and Management, 2019, 444: 225-234 [4] 张凤英, 廖梓延, 潘开文, 等. 西南地区壳斗科物种丰富度和特有性分布格局模拟及其环境解释. 应用生态学报, 2021, 32(7): 2290-2300 [5] 王健铭, 崔盼杰, 钟悦鸣, 等. 阿拉善高原植物区域物种丰富度格局及其环境解释. 北京林业大学学报, 2019, 41(3): 14-23 [6] Gallego-Zamorano J, Huijbregts MAJ, Schipper AM. Changes in plant species richness due to land use and nitrogen deposition across the globe. Diversity and Distributions, 2022, 28: 745-755 [7] Burslem DFRP, Pinard MA, Hartley SE. Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity. Cambridge: Cambridge University Press, 2005: 35-64 [8] Jiang F, Zhu K, Cadotte MW, et al. Tree mycorrhizal type mediates the strength of negative density depen-dence in temperate forests. Journal of Ecology, 2020, 108: 2601-2610 [9] Zobel M, Davison J, Edwards ME, et al. Ancient environmental DNA reveals shifts in dominant mutualisms during the late Quaternary. Nature Communications, 2018, 9: 139 [10] Smith SE, Read DJ. Mycorrhizal Symbiosis. 3rd Ed. San Diego, CA, USA: Academic Press, 2008 [11] Rich MK, Vigneron N, Libourel C, et al. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science, 2021, 372: 864-868 [12] Cairney JW. Evolution of mycorrhiza systems. Naturwissenschaften, 2000, 87: 467-475 [13] Heijden MGA, Martin FM, Selosse MA, et al. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 2015, 205: 1406-1423 [14] Guy P, Sibly R, Smart SM, et al. Mycorrhizal type of woody plants influences understory species richness in British broadleaved woodlands. New Phytologist, 2022, 235: 2046-2053 [15] Liang M, Johnson D, Burslem DFRP, et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nature Communications, 2020, 11: 2636 [16] Veresoglou SD, Wulf M, Rillig MC. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests. Ecology and Evolution, 2017, 7: 1181-1189 [17] Jiang F, Lutz JA, Guo Q, et al. Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests. Ecology, 2021, 102: e3259 [18] Simkin SM, Allen EB, Bowman WD, et al. Conditional vulnerability of plant diversity to Atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 4086-4091 [19] Grossman DH, Faber-Langendoen D, Weakley AS, et al. International Classification of Ecological Communities: Terrestrial Vegetation of the United States. Volume I. The National Vegetation Classification System: Deve-lopment, Status, and Applications. Arlington, VA, USA: The Nature Conservancy, 1998 [20] Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 2006, 16: 299-363 [21] Vargas R, Baldocchi DD, Querejeta JI, et al. Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytologist, 2010, 185: 226-236 [22] 石兆勇, 张凯, 苗艳芳, 等. 不同菌根类型森林净初级生产力对降水的响应. 水土保持通报, 2014, 34(1): 14-19 [23] Willig MR, Kaufman DM, Stevens RD. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 273-309 [24] Kwon Y, Lee T, Lang A, et al. Assessment on latitudinal tree species richness using environmental factors in the southeastern United States. PeerJ, 2019, 7: e6781 [25] Zhang H, Lü X, Hartmann H, et al. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Global Ecology and Biogeography, 2018, 27: 875-885 [26] 郑智, 龚大洁, 张乾, 等. 白水江自然保护区植物物种多样性的垂直格局: 面积、气候、边界限制的解释. 应用生态学报, 2014, 25(12): 3390-3398 [27] 王健, 钟悦鸣, 张天汉, 等. 中国黑戈壁地区植物物种丰富度格局的水热解释. 植物科学学报, 2016, 34(4): 530-538 [28] 刘庆福, 刘洋, 孙小丽, 等. 气候假说对内蒙古草原群落物种多样性格局的解释. 生物多样性, 2015, 23(4): 463-470 [29] Li L, Wang Z, Zerbe S, et al. Species richness patterns and water-energy dynamics in the drylands of northwest China. PLoS One, 2013, 8(6): e66450 [30] 杨欢, 王寅, 王健铭, 等. 库姆塔格沙漠南缘植物物种丰富度格局及主要影响因素. 植物科学学报, 2020, 38(4): 483-492 [31] 拉琼, 扎西次仁, 朱卫东, 等. 雅鲁藏布江河岸植物物种丰富度分布格局及其环境解释. 生物多样性, 2014, 22(3): 337-347 [32] 石兆勇, 王发园, 苗艳芳. 不同菌根类型的森林净初级生产力对气温变化的响应. 植物生态学报, 2012, 36(11): 1165-1171 [33] de Bang TC, Husted S, Laursen KH, et al. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 2021, 229: 2446-2469 [34] 鲁显楷, 莫江明, 董少峰. 氮沉降对森林生物多样性的影响. 生态学报, 2008, 28(11): 5532-5548 [35] Wang W, Feng Y, Wu R, et al. Long-term N addition reduced the diversity of arbuscular mycorrhizal fungi and understory herbs of a Korean pine plantation in northern China. Frontiers in Ecology and Evolution, 2023, 11, DOI: 10.3389/fevo.2023.1192267 [36] 史加勉, 王聪, 郑勇, 等. 丛枝菌根真菌形态结构、物种多样性和群落组成对氮沉降响应研究进展. 菌物学报, 2023, 42(1): 118-129 [37] Liu Y, Shi G, Mao L, et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194: 523-535 [38] Yang N, Wang B, Liu D, et al. Long-term nitrogen deposition alters ectomycorrhizal community composition and function in a poplar plantation. Journal of Fungi, 2021, 7: 791 [39] Ke Y, Yu Q, Wang H, et al. The potential bias of nitrogen deposition effects on primary productivity and biodiversity. Global Change Biology, 2023, 29: 1054-1061 [40] 郝龙飞, 刘婷岩, 何永琴, 等. 菌根真菌调控灌木铁线莲根际土壤生态化学计量特征对氮沉降的应激响应. 林业科学, 2022, 58(6): 151-160 [41] 牛钰杰, 周建伟, 杨思维, 等. 坡向和海拔对高寒草甸山体土壤水热和植物分布格局的定量分解. 应用生态学报, 2017, 28(5): 1489-1497 [42] Wang L, Liu C, Alves DG, et al. Plant diversity is associated with the amount and spatial structure of soil heterogeneity in meadow steppe of China. Landscape Ecology, 2015, 30: 1713-1721 [43] Azevedo LB, van Zelm R, Hendriks AJ, et al. Global assessment of the effects of terrestrial acidification on plant species richness. Environmental Pollution, 2013, 174: 10-15 [44] Palpurina S, Wagner V, von Wehrden H, et al. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 2017, 26: 425-434 [45] Philippot L, Chenu C, Kappler A, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2023, DOI: 10.1038/S41579-023-00980-5 [46] 赵天龙, 解光宁, 张晓霞, 等. 酸性土壤上植物应对铝胁迫的过程与机制. 应用生态学报, 2013, 24(10): 3003-3011 [47] 叶锦培, 黄振格, 梁彩霞, 等. 外生菌根真菌接种与铝胁迫对土贡松幼苗生长的影响. 山西农业科学, 2018, 46(11): 1867-1870 [48] Wang X, Fang J, Sanders NJ, et al. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 2009, 32: 133-142 [49] Newman EI, Reddell P. Relationship between mycorrhizal infection and diversity in vegetation: Evidence from the Great Smoky Mountains. Functional Ecology, 1988, 2: 259 [50] Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science, 2020, 367: eaba1223 |