[1] Zeng WJ, Wang W. Combination of nitrogen and phosphorus fertilization enhance ecosystem carbon sequestration in a nitrogen-limited temperate plantation of nor-thern China. Forest Ecology and Management, 2015, 341: 59-66 [2] 何敏, 许秋月, 夏允, 等. 植物磷获取机制及其对全球变化的响应. 植物生态学报, 2023, 47(3): 291-305 [3] Richardson AE, Lynch JP, Ryan PR, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349: 121-156 [4] Zhang XY, Yang Y, Zhang C, et al. Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils. Functional Ecology, 2018, 32: 106-116 [5] Neal AL, Rossmann M, Brearley C, et al. Land use influences phosphatase gene micro-diversity in soils. Environmental Microbiology, 2017, 19: 2740-2753 [6] 张喆, 黄永珍, 张超, 等. 不同林龄杉木人工林土壤团聚体磷素分布特征. 应用生态学报, 2022, 33(4): 939-948 [7] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79: 7-31 [8] Alagöz Z, Yilmaz E. Effects of different sources of organic matter on soil aggregate formation and stability: A laboratory study on a Lithic Rhodoxeralf from Turkey. Soil and Tillage Research, 2009, 103: 419-424 [9] Fonte S, Nesper M, Hegglin D, et al. Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biology and Biochemistry, 2014, 68: 150-157 [10] Jiang X, Bol R, Willbold S, et al. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil. Biogeosciences, 2015, 12: 6443-6452 [11] 赵楚, 盛茂银, 白义鑫, 等. 喀斯特石漠化地区不同土地利用类型土壤氮磷有效性及其环境影响因子. 应用生态学报, 2021, 32(4): 1383-1392 [12] 杨华, 龙健, 李兆君, 等. 土地利用方式对红枫湖入湖流域土壤团聚体磷含量及其形态的影响. 农业环境科学学报, 2013, 32(11): 2214-2220 [13] 刘鼎. 不同土地利用方式下石灰性和酸性土壤团聚体的磷形态及其吸附解吸特征. 硕士论文. 桂林: 广西师范大学, 2023 [14] 袁萍, 周嘉聪, 张秋芳, 等. 中亚热带不同森林更新方式生态酶化学计量特征. 生态学报, 2018, 38(18): 6741-6748 [15] 莫江明. 鼎湖山退化马尾松林、混交林和季风常绿阔叶林土壤全磷和有效磷的比较. 广西植物, 2005(2): 186-192 [16] 彭建勤, 林成芳, 洪慧滨, 等. 中亚热带森林更新方式对土壤磷素的影响. 生态学报, 2016, 36(24): 8015-8024 [17] 张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征. 生态学报, 2018, 38(16): 5828-5836 [18] 江淼华, 吕茂奎, 胥超, 等. 亚热带米槠次生林和杉木人工林林冠截留特征比较. 水土保持学报, 2017, 31(1): 116-121 [19] 孙颖, 高颖, 陈惠, 等. 亚热带米槠林不同更新方式对土壤可溶性有机质降解性的影响. 应用生态学报, 2020, 31(4): 1073-1082 [20] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [21] 王小红. 中亚热带山区两种母岩土壤团聚体稳定性及有机碳对森林转换的响应. 硕士论文. 福州: 福建师范大学, 2015 [22] Denef K, Six J, Merckx R, et al. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant and Soil, 2002, 246: 185-200 [23] Saunders WMH, Williams EG. Observations on the determination of total organic phosphorus in soils. Journal of Soil Science, 1955, 6: 254-267 [24] Brookes PC, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17: 837-842 [25] Gatiboni L, Condron LM. A rapid fractionation method for assessing key soil phosphorus parameters in agroecosystems. Geoderma, 2021, 385: 114893 [26] Murrell TS, Fixen PE. Soil Test Levels in North Ame-rica. Peachtree Corners, GA, USA: International Plant Nutrition Institute, 2015 [27] 王龙凤, 肖伟伟, 王树力. 天然次生林人工管理后土壤团聚体稳定性及碳氮分布变化. 北京林业大学学报, 2022, 44(7): 97-106 [28] 魏亚伟, 苏以荣, 陈香碧, 等. 人为干扰对喀斯特土壤团聚体及其有机碳稳定性的影响. 应用生态学报, 2011, 22(4): 971-978 [29] 杨芳, 何园球, 李成亮, 等. 不同施肥条件下旱地红壤磷素固定及影响因素的研究. 土壤学报, 2006, 59(2): 267-272 [30] 朱锟恒, 段良霞, 李元辰, 等. 土壤团聚体有机碳研究进展. 中国农学通报, 2021, 37(21): 86-90 [31] 王兴, 钟泽坤, 张欣怡, 等. 长期撂荒恢复土壤团聚体组成与有机碳分布关系. 环境科学, 2020, 41(5): 2416-2424 [32] 周亦靖, 牛犇, 李欢, 等. 长期施肥对旱地红壤微团聚体磷素有效性的影响. 土壤通报, 2023, 54(1): 89-99 [33] 苏世锋, 李世雄, 赵文, 等. 黑河源区退化草地恢复过程中土壤磷养分及其调控因子. 草业科学, 2022, 39(8): 1562-1570 [34] Wu XJ, Peng JJ, Liu PF, et al. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Science of the Total Environment, 2021, 785: 147329 [35] Li YX, Wang LX, Zhang SQ, et al. Freeze-thaw cycles increase the mobility of phosphorus fractions based on soil aggregate in restored wetlands. Catena, 2022, 209: 105846 [36] Garland G, Bünemann E, Oberson A, et al. Phosphorus cycling within soil aggregate fractions of a highly weathe-red tropical soil: A conceptual model. Soil Biology and Biochemistry, 2018, 116: 91-98 [37] 查春梅, 颜丽, 张昀, 等. 不同土地利用方式对棕壤及其各级微团聚体中有机磷组分的影响. 水土保持学报, 2007, 21(4): 141-144 [38] 张清海. 贵州喀斯特石漠化地区土壤磷素变异特征及生态恢复研究. 硕士论文. 贵阳: 贵州大学, 2007 [39] 张楠, 杨智杰, 胥超, 等. 中亚热带森林转换对凋落物养分归还及养分利用效率的影响. 应用生态学报, 2022, 33(2): 321-328 [40] 林波. 中亚热带米槠次生林和杉木人工林细根养分含量特征. 亚热带资源与环境学报, 2021, 16(1): 29-34 [41] 肖华翠, 李靖雯, 夏允, 等. 中亚热带不同母质发育森林土壤磷组分特征及其影响因素. 应用生态学报, 2021, 32(1): 16-22 [42] 张鑫, 谷会岩, 陈祥伟. 择伐干扰对小兴安岭阔叶红松林土壤磷形态及有效性的影响. 应用生态学报, 2018, 29(2): 441-448 [43] Zhu J, Li M, Whelan M. Phosphorus activators contri-bute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 2018, 612: 522-537 [44] Maranguit D, Guillaume T, Kuzyakov Y. Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena, 2017, 149: 385-393 [45] 楚海燕. 中亚热带森林转换对土壤团聚体中微生物群落结构及酶活性的影响. 硕士论文. 福州: 福建师范大学, 2020 [46] 谭秋锦. 峡谷型喀斯特不同生态系统植被与土壤的耦合关系. 硕士论文. 南宁: 广西大学, 2015 |