[1] Leung DYC, Tsui JKY, Chen F. Effects of urban vegetation on urban air quality. Landscape Research, 2011, 36: 173-188 [2] Obermeier C, Mason AS, Meiners T, et al. Perspectives for integrated insect pest protection in oilseed rape breeding. Theoretical and Applied Genetics, 2022, 135: 3917-3946 [3] 张翔. 哀牢山亚热带常绿阔叶林木本植物幼苗群落虫食率调查. 硕士论文. 合肥: 安徽大学, 2022 [4] 刘志国, 景军, 李恺. 亚热带阔叶林植物叶片虫食特征研究. 生态环境学报, 2013, 22(1): 78-84 [5] Ayres MP, Lombardero MJ. Assessing the consequences of global change for forest disturbances from herbivores and pathogens. Science of the Total Environment, 2000, 262: 263-286 [6] Zhou SQ, Lou YR, Tzin V, et al. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiology, 2015, 169: 1488-1498 [7] 张月白, 娄永根. 植物与植食性昆虫化学互作研究进展. 应用生态学报, 2020, 31(7): 2151-2160 [8] Calfapietra C, Fares S, Manes F, et al. Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environmental Pollution, 2013, 183: 71-80 [9] Guenther A, Hewitt CN, Erickson DFR, et al. A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres, 1995, 100: 8873-8892 [10] 鲍歆歆, 周伟奇, 郑重, 等. 城市植物挥发性有机化合物排放与臭氧相互作用及其机制. 生态学报, 2023, 43(5): 1749-1762 [11] 李德文, 史奕, 何兴元. 大气二氧化碳和臭氧浓度升高对植物挥发性有机化合物排放影响的研究进展. 应用生态学报, 2005, 16(12): 2454-2458 [12] Rieksta J, Li T, Junker RR, et al. Insect herbivory strongly modifies mountain birch volatile emissions. Frontiers in Plant Science, 2020, 11: 558979 [13] Ghimire RP, Kivimäenpää M, Kasurinen A, et al. Herbivore-induced BVOC emissions of scots pine under warming, elevated ozone and increased nitrogen availability in an open-field exposure. Agricultural and Forest Meteoro-logy, 2017, 242: 21-32 [14] Monson RK, Fall R. Isoprene emission from aspen lea-ves: Influence of environment and relation to photosynthesis and photorespiration. Plant Physiology, 1989, 90: 267-274 [15] Sulaiman HY, Liu B, Kaurilind E, et al. Phloem-fee-ding insect infestation antagonizes volatile organic compound emissions and enhances heat stress recovery of photosynthesis in Origanum vulgare. Environmental and Experimental Botany, 2021, 189: 104551 [16] Guarino S, Peri E, Colazza S, et al. Impact of the invasive painted bug Bagrada hilaris on physiological traits of its host Brassica oleracea var. botrytis. Arthropod-Plant Interactions, 2017, 11: 649-658 [17] Portillo-Estrada M, Okereke CN, Jiang YF, et al. Wounding-induced VOC emissions in five tropical agricultural species. Molecules, 2021, 26: 2602 [18] Zebelo SA, Maffei ME. Role of early signalling events in plant-insect interactions. Journal of Experimental Botany, 2015, 66: 435-448 [19] Yu GR, Chen Z, Piao SL, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 4910-4915 [20] Peñuelas J, Staudt M. BVOCs and global change. Trends in Plant Science, 2010, 15: 133-144 [21] 刘燕飞, 张羽, 赖金美, 等. 土壤氮水交互对马尾松和杉木COS和CO2通量的影响. 生态学报, 2020, 40(16): 5729-5738 [22] Guenther AB, Zimmerman PR, Harley PC, et al. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. Journal of Geophysical Research, 1993, 98: 12609-12617 [23] Aydin YM, Yaman B, Koca H, et al. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species. Science of the Total Environment, 2014, 490: 239-253 [24] Giri AP, Wunsche H, Mitra S, et al. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nico-tiana attenuata. Ⅶ. Changes in the plant’s proteome. Plant Physiology, 2006, 142: 1621-1641 [25] Nabity PD, Zavala JA, DeLucia EH. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Annals of Botany, 2009, 103: 655-663 [26] Tang JY, Zielinski RE, Zangerl AR, et al. The differential effects of herbivory by first and fourth instars of Trichoplusia ni (Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana. Journal of Experimental Botany, 2006, 57: 527-536 [27] Retuerto R, Fernandez-Lema B, Rodriguez-Roiloa, et al. Increased photosynthetic performance in holly trees infested by scale insects. Functional Ecology, 2004, 18: 664-669 [28] Haukioja E, Koricheva J. Tolerance to herbivory in woody vs. herbaceous plants. Evolutionary Ecology, 2012, 14: 551-562 [29] Garcia LC, Eubanks MD. Overcompensation for insect herbivory: A review and meta-analysis of the evidence. Ecology, 2019, 100: e02585 [30] Thomson VP, Cunningham SA, Ball MC, et al. Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Ecophysiology, 2003, 134: 167-175 [31] Halitschke R, Hamilton JG, Kessler A. Herbivore-specific elicitation of photosynthesis by mirid bug salivary secretions in the wild tobacco Nicotiana attenuata. New Phytologist, 2011, 191: 528-535 [32] 韦朝领, 童鑫, 高香凤, 等. 茶树对茶尺蠖取食危害的补偿光合生理反应研究. 安徽农业大学学报, 2007, 47(3): 355-359 [33] Pellissier F. Early physiological responses of Abies alba and Rubus fruticosus to ungulate herbivory. Plant Eco-logy, 2013, 214: 127-138 [34] Peacock L, Lewis M, Powers S. Volatile compounds from Salix spp. varieties differing in susceptibility to three willow beetle species. Journal of Chemical Eco-logy, 2001, 27: 1943-1951 [35] Cui HY, Su J, Wei JN, et al. Elevated O3 enhances the attraction of whitefly-infested tomato plants to Encarsia formosa. Scientific Reports, 2014, 4: 5350 [36] Mattiacci L, Dicke M, Posthums MA. Induction of parasitoid attracting synomone in brussels spouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor. Journal of Chemical Eco-logy, 1994, 20: 2229-2247 [37] Steinberg S, Dicke M, Vet LEM. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata. Journal of Chemical Ecology, 1993, 19: 47-59 [38] Hou SG, Rodrigues O, Liu ZY, et al. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. Molecular Plant, 2024, 17: 26-49 [39] Guenther AB, Monson RK, Fall R. Isoprene and mono-terpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. Journal of Geophysical Research Atmospheres, 1991, 96: 10799-10808 [40] Niinemets Ü, Reichstein M, Staut M, et al. Stomatal constraints may affect emission of oxy-genated monoterpenoids from the foliage of Pinus pinea. Plant Physio-logy, 2002, 130: 1371-1385 [41] Nabity PD, Zavala JA, DeLucia EH. Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata. Journal of Experimental Botany, 2013, 64: 685-694 [42] Mafel E, Mayrhofer S, Muller A, et al. Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmospheric Environment, 2006, 40: 138-151 [43] Yuan XY, Du YD, Feng ZZ, et al. Differential responses and mechanisms of monoterpene emissions from broad-leaved and coniferous species under elevated ozone scenarios. Science of the Total Environment, 2024, 951: 175291 |