欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (3): 693-702.doi: 10.13287/j.1001-9332.202503.022

• 城市气候与城市设计专栏(专栏策划:何宝杰) • 上一篇    下一篇

城市化背景下京津冀地区遥感植被物候的变化特征

花艺玮1,2,3,4, 孟丹1,2,3,4*, 胡非凡1,2,3,4, 赵月1,2,3,4, 张聪聪5, 李小娟1,2,3,4   

  1. 1首都师范大学资源环境与旅游学院, 北京 100048;
    2水资源安全北京实验室, 北京 100048;
    3北京市城市环境过程与数字模拟国家重点实验室培育基地, 北京 100048;
    4资源环境与地理信息系统北京市重点实验室, 北京 100048;
    5保定市自然资源和规划局, 河北保定 071000
  • 收稿日期:2024-08-15 接受日期:2024-12-31 出版日期:2025-03-18 发布日期:2025-05-15
  • 通讯作者: * E-mail: mengdan@cnu.edu.cn
  • 作者简介:花艺玮, 女, 2000年生, 硕士。主要从事城市热岛、植被物候遥感研究。E-mail: yyy2013832697@163.com
  • 基金资助:
    国家自然科学基金项目(42271487)

Changes of remote sensing vegetation phenology in Beijing-Tianjin-Hebei region under the background of urbanization

HUA Yiwei1,2,3,4, MENG Dan1,2,3,4*, HU Feifan1,2,3,4, ZHAO Yue1,2,3,4, ZHANG Congcong5, LI Xiaojuan1,2,3,4   

  1. 1College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China;
    2Beijing Laboratory of Water Resource Security, Beijing 100048, China;
    3State Key Laboratory Incubation Base of Urban Environmental Processes and Digital Simulation, Beijing 100048, China;
    4Beijing Municipal Key Laboratory of Resource Environment and Geographic Information System, Beijing 100048, China;
    5Baoding Natural Resources and Municipal Planning Bureau, Baoding 071000, Hebei, China
  • Received:2024-08-15 Accepted:2024-12-31 Online:2025-03-18 Published:2025-05-15

摘要: 城市环境面临不透水面增加、城市热岛效应加剧以及空气污染严峻等多重挑战,对城市的植被物候造成一定影响。本研究对2002—2021年京津冀地区的MOD13Q1增强植被指数数据进行时间序列重构,基于动态阈值法提取出关键植被物候参数,探究动态城市化梯度下植被物候的变化特征。结果表明: 研究期间,京津冀东南部地区的生长季开始期(SOS)较早、中部和西南部地区的生长季结束期(EOS)较晚,中部和东南部地区的生长季长度(GSL)较长;京津冀大部分地区的SOS提前、EOS推迟,导致GSL显著延长。不同植被类型的物候趋势总体一致,但具体表现各异:农田的SOS提前幅度最大,森林的EOS推迟幅度最大,农田的GSL延长幅度最大。2002—2021年,不透水面占比(ISP)每增加10%,SOS平均提前1.28 d,EOS平均推迟1.33 d,GSL平均延长2.2 d。此外,随着ISP增强,地表温度先升高,ISP到达40%后趋于稳定;随着地表温度升高,SOS呈现先提前后推迟趋势(拐点地表温度为23 ℃),EOS呈现先推迟后提前趋势(拐点地表温度为20 ℃),推测这一结果与光温周期耦合调控物候有关。植被物候在动态城市化梯度下的响应程度展现出显著差异,地表温度作为重要环境因素,对城乡物候差异的形成具有重要影响。

关键词: 植被物候, 增强型植被指数, 城市化梯度, 地表温度

Abstract: Urban environments face numerous challenges, including an increase in impervious surfaces, intensification of heat island effect, and severe air pollution, which all affect urban vegetation phenology. We reconstructed the time series of MOD13Q1 enhanced vegetation index data for the Beijing-Tianjin-Hebei region during 2002-2021, extracted the vegetation phenology index based on the dynamic threshold method, and examined the dyna-mics of vegetation phenology under a urbanization gradient. The results showed that the start of growing season (SOS) occurred earlier in the southeastern region of Beijing-Tianjin-Hebei, the end of growing season (EOS) was later in the central and southwestern regions, and the growing season length (GSL) was extended in the central and southeastern regions. SOS had been advanced and EOS had been delayed in most areas of Beijing-Tianjin-Hebei, leading to a significant extension of the GSL. The phenological trends were generally consistent across different vegetation types, with specific manifestations varied. The advance in SOS was most pronounced in farmland. The delay in EOS was greatest in forests. The extension of GSL was most substantial in farmland. During 2002-2021, for every 10% increase in the proportion of impervious surface percentage (ISP), SOS advanced by 1.28 day, EOS was delayed by 1.33 day, and GSL was extended by 2.2 days. With increasing ISP, land surface temperature initially rose but stabilized once it exceeded 40%. As land surface temperature increased, SOS first advanced and then delayed (with an inflection point at 23 ℃), while EOS first delayed and then advanced (with an inflection point at 20 ℃). We speculated that the result was related to the coupling of light and temperature periods. The response degree of vegetation phenology under dynamic urbanization gradient showed significant differences. Surface temperature played an important role in driving the urban-rural phenological difference.

Key words: vegetation phenology, enhanced vegetation index, urbanization gradient, land surface temperature