[1] Yang X, Wang D, Lan Y, et al. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. Journal of Soils and Sediments, 2018, 18: 1569-1578 [2] 张玲, 张东来, 毛子军, 等. 不同群落类型土壤惰性碳含量特征与维持机制. 森林工程, 2019, 35(6): 16-25 [3] 侯赛赛, 白懿杭, 王灿, 等. 土壤有机碳及其活性组分研究进展. 江苏农业科学, 2023, 51(13): 24-33 [4] Jones DL, Willett VB. Experimental evaluation of me-thods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38: 991-999 [5] Kalbitz K, Solinger S, Park JH, et al. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, 2000, 165: 277-304 [6] Wang XG, Li CS, Luo Y, et al. The impact of nitrogen amendment and crop growth on dissolved organic carbon in soil solution. Journal of Mountain Science, 2016, 13: 95-103 [7] 钟聪, 李小洁, 何园燕, 等. 广西土壤有机质空间变异特征及其影响因素研究. 地理科学, 2020, 40(3): 478-485 [8] 张天昱, 张彦, 贾琪, 等. 独流减河不同植被缓冲带土壤有机碳的空间分布特征及其季节变化. 环境科学, 2024, 45(11): 6527-6537 [9] 史传奇, 李艳, 胡钰, 等. 北方寒区河流湿地土壤溶解性有机质荧光光谱特征. 光谱学与光谱分析, 2023, 43(5): 1517-1523 [10] 何冬梅, 王磊, 冯育青, 等. 不同土地利用类型对土壤可溶性有机碳的影响. 南京林业大学学报: 自然科学版, 2016, 40(6): 15-19 [11] McElmurry SP. Characterization of dissolved organic carbon: Assessment of copper complexation and export of carbon from watersheds as a function of land use. Doctor Thesis. East Lansing, MI, USA: Michigan State University, 2023 [12] Lange M, Roth VN, Eisenhauer N, et al. Plant diversity enhances production and downward transport of biodegradable dissolved organic matter. Journal of Ecology, 2021, 109: 1284-1297 [13] 申楷慧, 魏识广, 李林, 等. 漓江流域喀斯特森林土壤有机碳空间分布格局及其驱动因子. 环境科学, 2024, 45(1): 323-334 [14] 彭晶晶, 闫如柳. 湖南省植被覆盖度动态变化监测及影响因素分析. 安徽农业科学, 2022, 50(7): 51-54 [15] 李忠武, 李嘉奇, 王凌霞, 等. 基于CSLE-TLSD耦合模型的近40年洞庭湖流域土壤侵蚀时空分异及归因分析. 水土保持学报, 2023, 37(5): 207-214, 266 [16] 杨伶, 邓敏, 王金龙, 等. 近40年来洞庭湖流域土地利用及生态风险时空演变分析. 生态学报, 2021, 41(10): 3929-3939 [17] 王天巍. 中国土系志· 湖北卷. 北京: 科学出版社, 2017: 57-69 [18] 李亚林, 练金山, 任凤玲, 等. 浸提条件对土壤溶解性有机碳测定结果的影响. 农业资源与环境学报, 2022, 39(4): 741-748 [19] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000: 94-121 [20] 彭守璋. 中国1 km分辨率逐月降水量数据集[EB/OL]. (2023-09-24)[2024-06-21]. https://www.geodata.cn/ [21] 赵明松, 张甘霖, 王德彩, 等. 徐淮黄泛平原土壤有机质空间变异特征及主控因素分析. 土壤学报, 2013, 50(1): 1-11 [22] 张梦薇, 吕成文. 丰乐河流域表层土壤有机碳空间变异特征研究. 长江流域资源与环境, 2018, 27(7): 1576-1583 [23] Cambardella CA, Moorman T, Novak J, et al. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 1994, 58: 1501-1511 [24] 顾春雷, 杨漾, 朱志春. 几种建立DEM模型插值方法精度的交叉验证. 测绘与空间地理信息, 2011, 34(5): 99-102 [25] Barre P, Durand H, Chenu C, et al. Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma, 2017, 285: 50-56 [26] Jiang Y, Xiang D, Li Z, et al. Study on soil and water erosion of Xiang Xi watershed based on 3S dynamic monitoring. International Journal of Environmental Science and Development, 2018, 9: 173-177 [27] 袁淑君, 王莹. 洞庭湖区土地利用变化特征及驱动力分析模拟研究. 江西农业学报, 2023, 35(8): 177-184 [28] Chen LC, Guan X, Li HM, et al. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. Forest Ecology and Management, 2019, 432: 656-666 [29] Wang QQ, Huang Q, Wang JX, et al. Dissolved organic carbon drives nutrient cycling via microbial community in paddy soil. Chemosphere, 2021, 285: 131472 [30] 张金波, 宋长春, 杨文燕. 小叶章湿地表土水溶性有机碳季节动态变化及影响因素分析. 环境科学学报, 2005, 25(10): 1397-1402 [31] Wang FL, Bettany JR. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil. Journal of Environmental Quality, 1993, 22: 709-714 [32] 李亚林, 练金山, 任凤玲. 不同土地利用方式和气候区域下土壤溶解性有机碳差异特征. 环境工程技术学报, 2024, 14(5): 1427-1435 [33] Gutiérrez-Girón A, Díaz-Pinés E, Rubio A, et al. Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma, 2015, 237: 1-8 [34] 白潇, 张世熔, 钟钦梅, 等. 中国东部区域土壤活性有机碳分布特征及其影响因素. 生态环境学报, 2018, 27(9): 1625-1631 [35] 李玲, 肖和艾, 苏以荣, 等. 土地利用对亚热带红壤区典型景观单元土壤溶解有机碳含量的影响. 中国农业科学, 2008, 41(1): 122-128 [36] 汤宏, 沈健林, 张杨珠, 等. 秸秆还田与水分管理对稻田土壤微生物量碳, 氮及溶解性有机碳, 氮的影响. 水土保持学报, 2013, 27(1): 240-246 [37] 黄伟生, 彭佩钦, 苏以荣, 等. 洞庭湖区耕地利用方式对土壤活性有机碳的影响. 农业环境科学学报, 2006, 25(3): 756-760 [38] Xia YH, Chen XB, Zheng XD, et al. Preferential uptake of hydrophilic and hydrophobic compounds by bacteria and fungi in upland and paddy soils. Soil Biology and Biochemistry, 2020, 148: 107879 [39] 管彤彤, 张燕, 陶海宁, 等. 绿肥还田对土壤有机碳组分及碳转化酶活性的影响. 中国农业科学, 2024, 57(14): 2791-2802 [40] Zhao QQ, Bai JH, Zhang GL, et al. Effects of water and salinity regulation measures on soil carbon sequestration in coastal wetlands of the Yellow River Delta. Geoderma, 2018, 319: 219-229 [41] 任秀娥, 童成立, 孙中林, 等. 温度对不同粘粒含量稻田土壤有机碳矿化的影响. 应用生态学报, 2007, 18(10): 2245-2250 [42] Bolan NS, Adriano DC, Kunhikrishnan A, et al. Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy, 2011, 110: 1-75 [43] 王亚娟, 陈云明, 孙亚荣, 等. 宁南山区侵蚀沟不同部位土壤理化性质及可蚀性研究. 水土保持学报, 2023, 37(2): 11-18 [44] Wang QK, Wang SL. Soil organic matter under different forest types in Southern China. Geoderma, 2007, 142: 349-356 [45] Lu X, Gilliam FS, Yu G, et al. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem. Biogeosciences, 2013, 10: 3931-3941 [46] 姜培坤. 不同林分下土壤活性有机碳库研究. 林业科学, 2005, 41(1): 10-13 [47] 吴梦佳, 于耀泓, 顾晓娟, 等. 尾叶桉与木荷林对土壤理化性质及易氧化有机碳的影响. 森林与环境学报, 2023, 43(4): 356-362 [48] Gruba P, Mulder J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Science of the Total Environment, 2015, 511: 655-662 |