应用生态学报 ›› 2025, Vol. 36 ›› Issue (3): 847-858.doi: 10.13287/j.1001-9332.202503.019
单雅茹, 田嘉禾, 樊修稳, 刘磊*
收稿日期:
2024-08-21
接受日期:
2025-01-22
出版日期:
2025-03-18
发布日期:
2025-05-15
通讯作者:
* E-mail: leiliu@zzu.edu.cn
作者简介:
单雅茹, 女, 2003年生, 本科生。主要从事陆地生态系统碳循环研究。E-mail: yarushan@163.com
基金资助:
SHAN Yaru, TIAN Jiahe, FAN Xiuwen, LIU Lei*
Received:
2024-08-21
Accepted:
2025-01-22
Online:
2025-03-18
Published:
2025-05-15
摘要: 保护和增加土壤有机碳库是减缓气候变化的有效途径,但目前我国不同生态系统的土壤有机碳对气候变化的敏感性尚不明确。颗粒态(POC)和矿物结合态(MAOC)土壤有机碳组分的划分对研究土壤有机碳对气候变化的响应具有重要意义。本研究以POC和MAOC为研究对象,利用机器学习方法分析了我国大陆土壤有机碳组分的空间分布,并模拟了其对未来气候变化的响应。结果表明:1)我国0~20 cm土层土壤总有机碳储量为45.3 Pg,POC、MAOC的总碳储量分别为20.7和24.6 Pg;2)土壤有机碳组分与海拔呈显著正相关,与气温呈显著负相关;3)SSP585情境下,我国大陆POC、MAOC储量均呈减小趋势,2020—2100年分别减少4.80和2.13 Pg。我国大陆土壤有机碳组分含量在东北和青藏高原地区较高,在内蒙古高原、四川盆地和华北及西北平原地区较低,POC对气候变化的敏感性高于MAOC,气候变暖对草甸生态系统土壤有机碳造成的损失量最大。
单雅茹, 田嘉禾, 樊修稳, 刘磊. 中国大陆土壤有机碳组分的空间分布及其对气候变化的响应[J]. 应用生态学报, 2025, 36(3): 847-858.
SHAN Yaru, TIAN Jiahe, FAN Xiuwen, LIU Lei. Spatial distribution of soil organic carbon components in mainland of China and their response to climate change[J]. Chinese Journal of Applied Ecology, 2025, 36(3): 847-858.
[1] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627 [2] Bailey VL, Bond-Lamberty B, DeAngelis K, et al. Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 2018, 24: 895-905 [3] Dungait JA, Hopkins DW, Gregory AS, et al. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 2012, 18: 1781-1796 [4] Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26: 261-273 [5] Zhou ZH, Ren CJ, Wang CK, et al. Global turnover of soil mineral-associated and particulate organic carbon. Nature Communications, 2024, 15: 5329 [6] von Lützow M, Kögel-Knabner I, Ekschmitt K, et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 2007, 39: 2183-2207 [7] 邓祥征, 姜群鸥, 林英志, 等. 中国农田土壤有机碳贮量变化预测. 地理研究, 2010, 29(1): 93-101 [8] 徐丽, 于贵瑞, 何念鹏. 1980s—2010s中国陆地生态系统土壤碳储量的变化. 地理学报, 2018, 73(11): 2150-2167 [9] 罗梅, 郭龙, 张海涛, 等. 基于环境变量的中国土壤有机碳空间分布特征. 土壤学报, 2020, 57 (1): 48-59 [10] Chen Q, Zhou ZY, Cai SL, et al. Spatial-temporal variation of soil organic matter decomposition potential in China. Soil and Tillage Research, 2024, 235: 105898 [11] 田康, 赵永存, 邢喆, 等. 中国保护性耕作农田土壤有机碳变化速率研究: 基于长期试验点的Meta分析. 土壤学报, 2013, 50(3): 433-440 [12] Zhang SH, Zhou XB, Chen YS, et al. Soil organic carbon fractions in China: Spatial distribution, drivers, and future changes. Science of the Total Environment, 2024, 919: 170890 [13] Lan XJ, Shan J, Huang Y, et al. Effects of long-term manure substitution regimes on soil organic carbon composition in a red paddy soil of southern China. Soil and Tillage Research, 2022, 221: 105395 [14] 董玉清, 官鹏, 卢瑛, 等. 猫儿山不同海拔土壤有机碳组分构成及含量特征. 土壤通报, 2020, 51(5): 1142-1151 [15] 贾生强, 范惠珊, 陈喜靖, 等. 长期秸秆还田下土壤反硝化细菌群落的有机碳驱动机制. 浙江农业学报, 2021, 33(9): 1686-1699 [16] 郭亚军, 邱慧珍, 张玉娇, 等. 不同施肥方式对马铃薯农田土壤有机碳组分和碳库管理指数的影响. 土壤通报, 2021, 52(4): 912-919 [17] 段佳茹. 不同施肥条件下秸秆碳在表层和深层土壤团聚体中的分配和固存. 博士论文. 沈阳: 沈阳农业大学, 2022 [18] 徐明岗, 李然, 孙楠, 等. 施用有机肥煤矿复垦耕地有机碳的固持效率及组分变化. 植物营养与肥料学报, 2022, 28(12): 2143-2151 [19] 赵馨雅, 刘帅, 徐静怡, 等. 覆盖作物种植对砂姜黑土团聚体稳定性及其有机碳组分的影响. 农业资源与环境学报, 2023, 40(6): 1377-1387 [20] 张世汉, 武均, 张仁陟, 等. 施氮对陇中黄土高原旱作农田土壤颗粒态有机碳的影响. 水土保持研究, 2019, 26(6): 7-11 [21] 安崇霄, 张永杰, 符小文, 等. 夏大豆土壤微生物有机碳及颗粒有机碳对不同耕作措施的响应. 新疆农业科学, 2019, 56(6): 1012-1021 [22] 谷忠元. 湘东地区典型土壤团聚体分布特征及其稳定性影响因素分析. 博士论文. 长沙: 湖南农业大学, 2019 [23] 何伟, 王会, 韩飞, 等. 长期施用有机肥显著提升潮土有机碳组分. 土壤学报, 2020, 57(2): 425-434 [24] 刘彩霞, 薛建福, 杜天庆, 等. 不同作物对连作玉米田土壤总有机碳与颗粒有机碳的影响. 山西农业大学学报: 自然科学版, 2018, 38(12): 1-7 [25] 武均, 蔡立群, 张仁陟, 等. 耕作措施对旱作农田土壤颗粒态有机碳的影响. 中国生态农业学报, 2018, 26(5): 728-736 [26] 高梦雨, 江彤, 韩晓日, 等. 施用炭基肥及生物炭对棕壤有机碳组分的影响. 中国农业科学, 2018, 51(11): 2126-2135 [27] 胡雪寒, 刘娟, 姜培坤, 等. 亚热带森林转换对不同粒径土壤有机碳的影响. 土壤学报, 2018, 55(6): 1485-1493 [28] 张祎, 李鹏, 马田田, 等. 黄土高原典型流域“自然-人工”植被对土壤表层碳分布的影响. 西安理工大学学报, 2017, 33(4): 443-449 [29] 景莎. 长白山阔叶红松林土壤微生物和有机质空间分布特征研究. 博士论文. 太原: 山西大学, 2016 [30] 周彩云, 魏宗强, 颜晓, 等. 不同施肥处理对水稻土颗粒有机碳与磷的影响. 江西农业大学学报, 2016, 38(2): 398-402 [31] 佟小刚, 韩新辉, 李娇, 等. 黄土丘陵区不同退耕还林地土壤颗粒结合态碳库分异特征. 农业工程学报, 2016, 32(21): 170-176 [32] 郑娇娇, 方华军, 程淑兰, 等. 增氮对青藏高原东缘典型高寒草甸土壤有机碳组成的影响. 生态学报, 2012, 32(17): 5363-5372 [33] 姬强. 土壤颗粒态有机碳及其活性对不同耕作措施的响应. 博士论文. 杨凌: 西北农林科技大学, 2012 [34] 马帅. 黄土高原次生林区植被恢复过程中土壤结构与土壤有机碳特征研究. 博士论文. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2011 [35] 宋迪思, 盛浩, 周萍, 等. 土地利用变化对花岗岩红壤颗粒有机碳及其组分的影响. 亚热带资源与环境学报, 2015, 10(3): 25-32 [36] 李玉进, 王百群, 丁婷婷. 陇东黄土高原农田土壤微生物量碳和颗粒有机碳剖面分布特征. 水土保持研究, 2013, 20(6): 1-5 [37] 邱牡丹, 盛浩, 颜雄, 等. 湘东丘陵4种林地深层土壤颗粒有机碳及其组分的分配特征. 农业现代化研究, 2014, 35(4): 493-499 [38] Ye CL, Hall JS, Hu SJ. Controls on mineral-associated organic matter formation in a degraded Oxisol. Geoderma, 2019, 338: 383-392 [39] 杨益, 牛得草, 文海燕, 等. 贺兰山不同海拔土壤颗粒有机碳、氮特征. 草业学报, 2012, 21(3): 54-60 [40] 李海波, 韩晓增, 尤孟阳. 不同土地利用与施肥管理下黑土团聚体颗粒有机碳分配变化. 水土保持学报, 2012, 26(1): 184-189 [41] 李银科. 开垦对荒漠土壤性状的影响. 博士论文. 兰州: 甘肃农业大学, 2007 [42] Xu Y, Duan X, Wu YN, et al. The efficiency and stability of soil organic carbon sequestration by perennial energy crops cultivation on marginal land depended on root traits. Soil and Tillage Research, 2024, 235: 105909 [43] Sun Q, Yang X, Bao ZR, et al. Responses of microbial necromass carbon and microbial community structure to straw- and straw-derived biochar in brown earth soil of Northeast China. Frontiers in Microbiology, 2022, 13: 967746 [44] Jiang ST, Lu Y, Wu JH, et al. Vertical distribution and microscopic sequestration mechanisms of soil organic carbon in upland and paddy soils. SSRN Electronic Journal, 2022, DOI: 10.2139/ssrn.4309505 [45] Pan JC, Liu C, Li HL, et al. Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain of China. Agroforestry Systems, 2022, 96: 997-1008 [46] Zhang YS, Zeng DH, Lei ZY, et al. Microbial properties determine dynamics of topsoil organic carbon stocks and fractions along an age-sequence of Mongolian pine plantations. Plant and Soil, 2023, 483: 441-457 [47] Su ZX, Zhong YQW, Zhu XY, et al. Vegetation restoration altered the soil organic carbon composition and favoured its stability in a Robinia pseudoacacia plantation. Science of the Total Environment, 2023, 899: 165665 [48] Su Y, He ZC, Yang YH, et al. Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Scientific Reports, 2020, 10: 5526 [49] Ye CL, Chen DM, Hall SJ, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecology Letters, 2018, 21: 1162-1173 [50] Geng J, Cheng SL, Fang HJ, et al. Nitrogen fertilization changes the molecular composition of soil organic matter in a subtropical plantation forest. Soil Science Society of America Journal, 2020, 84: 68-81 [51] 李林森, 程淑兰, 方华军, 等. 氮素富集对青藏高原高寒草甸土壤有机碳迁移和累积过程的影响. 土壤学报, 2015, 52(1): 183-193 [52] 张秀兰, 王方超, 方向民, 等. 亚热带杉木林土壤有机碳及其活性组分对氮磷添加的响应. 应用生态学报, 2017, 28(2): 449-455 [53] Lv JF, Shi J, Wang Z, et al. Effects of erosion and deposition on the extent and characteristics of organic carbon associated with soil minerals in Mollisol landscape. Catena, 2023, 228: 107190 [54] Latif AV, Sheng WL, Niu JR, et al. Effects of diversified cropping sequences and tillage practices on soil organic carbon, nitrogen, and associated fractions in the North China Plain. Journal of Soil Science and Plant Nutrition, 2021, 21: 1201-1212 [55] Pan SL, Shi J, Peng YM, et al. Soil organic carbon pool distribution and stability with grazing and topography in a Mongolian grassland. Agriculture, Ecosystems & Environment, 2023, 348: 108431 [56] Sun T, Mao XL, Han KF, et al. Nitrogen addition increased soil particulate organic carbon via plant carbon input whereas reduced mineral-associated organic carbon through attenuating mineral protection in agroecosystem. Science of the Total Environment, 2023, 899: 165705 [57] Xu Y, Duan X, Wu YN, et al. The efficiency and stability of soil organic carbon sequestration by perennial energy crops cultivation on marginal land depended on root traits. Soil and Tillage Research, 2024, 235: 105909 [58] Zhang YX, Tang ZX, You YM, et al. Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest. Soil Biology and Biochemistry, 2023, 180: 109017 [59] Lu JS, Zhang W, Li Y, et al. Effects of reduced tillage with stubble remaining and nitrogen application on soil aggregation, soil organic carbon and grain yield in maize-wheat rotation system. European Journal of Agronomy, 2023, 149: 126920 [60] Xong SJ, Zhu JL, Yang JL, et al. Straw return plus zinc fertilization increased the accumulations and changed the chemical compositions of mineral-associated soil organic carbon. Agriculture, Ecosystems & Environment, 2023, 357: 108699 [61] 李斌, 程小琴, 元晋芳, 等. 模拟硫沉降对华北落叶松人工林土壤有机碳组分的影响. 生态学杂志, 2018, 37(1): 82-88 [62] 王晓娇, 齐鹏, 蔡立群, 等. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响. 草业学报, 2020, 29(10): 58-69 [63] Qu Q, Zhang J, Hai XY, et al. Long-term fencing alters the vertical distribution of soil δ13C and SOC turnover rate: Revealed by MBC-δ13C. Agriculture, Ecosystems and Environment, 2022, 339: 108119 [64] 石宗琳, 王晓超, 郭一丁, 等. 衡水湖周边不同植被下土壤有机碳组成分布特征研究. 现代农村科技, 2021(11): 66-68 [65] 徐嘉晖. 大兴安岭森林土壤黑碳的分布及土壤固碳潜力. 博士论文. 哈尔滨: 东北林业大学, 2018 [66] 汪青, 张平究, 孟向东. 不同退耕年限对菜子湖湿地表土有机碳组分与质量的影响. 生态学杂志, 2012, 31(8): 2038-2043 [67] 黄小清, 仝川, 罗敏, 等. 九龙江河口潮滩湿地土壤有机碳储量、活性组分及稳定性沿淹水梯度的分布特征. 环境科学, 2022, 43(4): 2226-2236 [68] 陈超, 宓文海, 居静, 等. 长期不同施肥模式对中低产黄泥田土壤团聚体组成及碳组分的影响. 华北农学报, 2022, 37(3): 168-174 [69] 李欢, 王艳玲, 殷丹, 等. 水稻秸秆/根系添加对稻田红壤发生层颗粒态及矿物结合态有机碳的影响. 土壤通报, 2022, 53(2): 384-391 [70] 杨娥女. 黄土高原不同生态系统土壤有机碳特征和稳定性研究. 博士论文. 杨凌: 西北农林科技大学, 2022 [71] 胡丹阳, 张欢, 宿宝巍, 等. 长江下游沿江平原土壤发育过程中碳库分配动态. 环境科学, 2024, 45(1): 314-322 [72] 王尹佳. 泥炭地退化过程中矿物结合态有机碳变化及其对有机碳稳定性的影响研究. 博士论文. 绵阳: 西南科技大学, 2023 [73] 杨传宝, 倪惠菁, 苏文会, 等. 经营措施对毛竹林土壤不同组分有机碳、氮及化学结构的影响. 应用生态学报, 2020, 31(1): 25-34 [74] 邢瑶丽, 赵志忠, 李燕, 等. 不同撂荒年限的热带农田土壤有机碳组分累积特征: 以海南定安县撂荒农田为例. 安徽农业大学学报, 2018, 45(6): 1085-1091 [75] 常汉达, 王晶, 张凤华. 棉花长期连作结合秸秆还田对土壤颗粒有机碳及红外光谱特征的影响. 应用生态学报, 2019, 30(4): 1218-1226 [76] 陆畅, 徐畅, 黄容, 等. 秸秆和生物炭对油菜-玉米轮作下紫色土有机碳及碳库管理指数的影响. 草业科学, 2018, 35(3): 482-490 [77] 王娜, 朱小叶, 方晰, 等. 中亚热带退化林地土壤有机碳及不同粒径土壤颗粒有机碳的变化. 水土保持学报, 2018, 32(3): 218-225 [78] 江淼华, 吕茂奎, 林伟盛, 等. 生态恢复对红壤侵蚀地土壤有机碳组成及稳定性的影响. 生态学报, 2018, 38(13): 4861-4868 [79] 王迪, 吴新亮, 蔡崇法, 等. 长期培肥下红壤有机碳组成与团聚体稳定性的关系. 中国水土保持科学, 2016, 14(1): 61-70 [80] 王子龙, 胡斐南, 赵勇钢, 等. 土壤胶结物质分布特征及其对黄土大团聚体稳定性的影响. 水土保持学报, 2016, 30(5): 331-336 [81] 王朔林, 王改兰, 赵旭, 等. 长期施肥对栗褐土有机碳含量及其组分的影响. 植物营养与肥料学报, 2015, 21(1): 104-111 [82] 唐光木, 徐万里, 周勃, 等. 耕作年限对棉田土壤颗粒及矿物结合态有机碳的影响. 水土保持学报, 2013, 27(3): 237-241 [83] 王阳, 章明奎. 不同类型林地土壤颗粒态有机碳和黑碳的分布特征. 浙江大学学报: 农业与生命科学版, 2011, 37(2): 193-202 [84] 刘兆云, 章明奎. 侵蚀-沉积连续地形中土壤碳库的空间分异. 水土保持通报, 2009, 29(3): 61-65 [85] 石亚攀, 乔璐, 陈立新, 等. 红松针阔混交林林隙土壤颗粒有机碳和矿物结合有机碳的时空异质性. 林业科学, 2014, 50(6): 18-27 [86] 尚瑶, 傅民杰, 孙宇贺, 等. 温带阔叶林土壤有机碳及其颗粒组分空间分布特征. 水土保持学报, 2014, 28(5): 176-181 [87] 王鑫, 王金成, 刘建新, 等. 黄土高原人工沙棘林恢复阶段土壤黑碳、颗粒有机碳的积累. 水土保持学报, 2013, 27(2): 250-254 [88] Guo M, Zhao B, Wen YX, et al. Elevational pattern of soil organic carbon release in a Tibetan alpine grassland: Consequence of quality but not quantity of initial soil organic carbon. Geoderma, 2022, 428: 116148 [89] Dong LB, Fan JW, Li JW, et al. Forests have a higher soil C sequestration benefit due to lower C mineralization efficiency: Evidence from the central loess plateau case. Agriculture, Ecosystems & Environment, 2022, 339: 108144 [90] Dai SS, He P, Guo XL, et al. Faster carbon turnover in topsoil with straw addition is less beneficial to carbon sequestration than subsoil and mixed soil. Soil Science Society of America Journal, 2022, 86: 1431-1443 [91] Du XJ, Hu H, Wang TH, et al. Long-term rice cultivation increases contributions of plant and microbial-derived carbon to soil organic carbon in saline-sodic soils. Science of the Total Environment, 2023, 904: 166713 [92] Yuan X, Qin WK, Chen Y, et al. Plateau pika offsets the positive effects of warming on soil organic carbon in an alpine swamp meadow on the Tibetan Plateau. Catena, 2021, 204: 105417 [93] Xu M, Xu LJ, Fang HJ, et al. Alteration in enzymatic stoichiometry controls the response of soil organic carbon dynamic to nitrogen and water addition in temperate cultivated grassland. European Journal of Soil Biology, 2020, 101: 103248 [94] 徐梦, 徐丽君, 程淑兰, 等. 人工草地土壤有机碳组分与微生物群落对施氮补水的响应. 中国农业科学, 2020, 53(13): 2678-2690 [95] Duan PP, Wang KL, Li DJ. Nitrogen addition effects on soil mineral-associated carbon differ between the valley and slope in a subtropical karst forest. Geoderma, 2023, 430: 116357 [96] Aoyama M, Angers DA, N’dayegamiye A. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications. Canadian Journal of Soil Science, 1999, 79: 295-302 [97] Shi JW, Song MY, Yang L, et al. Recalcitrant organic carbon plays a key role in soil carbon sequestration along a long-term vegetation succession on the Loess Plateau. Catena, 2023, 233: 107528 [98] Geng HT, Wang XD, Shi SB, et al. Fertilization makes strong associations between organic carbon composition and microbial properties in paddy soil. Journal of Environmental Management, 2023, 325: 116605 [99] Zhang ZX, Hao M, Yu QH, et al. The effect of thinning intensity on the soil carbon pool mediated by soil microbial communities and necromass carbon in coastal zone protected forests. Science of the Total Environment, 2023, 881: 163492 [100] Peng SZ, Ding YX, Liu WZ, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11: 1931-1946 [101] 中国科学院中国植被图编辑委员会. 中国1∶100万植被数据集[EB/OL]. (2021-01-06) [2024-08-20]. https://www.ncdc.ac.cn/portal/metadata/20d2728d-8845-4a8b-a546-5f4f50fb036d [102] Friedman JH. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 2001: 1189-232 [103] 王翀. 高寒草地土壤有机碳影响因子与模拟模型的研究. 博士论文. 兰州: 兰州大学, 2018 [104] 史培军, 胡小康, 陈彦强, 等. 青藏高原地表大气氧含量空间格局及自然地带“三维分异”的新认识. 地理学报, 2023, 78(3): 532-547 [105] 谭格非, 王兆锋, 张镱锂, 等. 西藏一江两河地区耕地土壤有机碳空间分异及其影响因素. 生态学杂志, 2024, 43(6): 1824-1832 [106] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 2005, 25(11): 83-90 [107] 韩露, 万忠梅, 孙赫阳. 冻融作用对土壤物理、化学和生物学性质影响的研究进展. 土壤通报, 2018, 49(3): 736-742 [108] 王丽芹, 齐玉春, 董云社, 等. 冻融作用对陆地生态系统氮循环关键过程的影响效应及其机制. 应用生态学报, 2015, 26(11): 3532-3544 [109] 梁爱珍, 张晓平, 杨学明, 等. 东北黑土有机碳的分布及其损失量研究. 土壤通报, 2008, 39(3): 533-538 [110] Sanderman J, Hengl T, Fiske GJ. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 9575-9580 [111] 高燕. 增温和降水变化对秸秆还田黑土有机碳周转的影响. 博士论文. 长春:中国科学院东北地理与农业生态研究所, 2023 [112] 李呈吉. 四川盆地耕地土壤颗粒态和矿物结合态有机碳分布及其影响因素. 博士论文. 雅安: 四川农业大学, 2023 [113] 杨娥女, 王宝荣, 姚宏佳, 等. 黄土高原生物土壤结皮发育过程中颗粒态和矿物结合态有机碳变化特征. 水土保持研究, 2023, 30(1): 25-33, 40 [114] Cotrufo MF, Wallenstein MD, Boot CM, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 2013, 19: 988-995 [115] Cotrufo MF, Ranalli TG, Haddix ML, et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12: 989-994 [116] 梁爱珍, 张晓平, 杨学明, 等. 黑土颗粒态有机碳与矿物结合态有机碳的变化研究. 土壤学报, 2010, 47(1): 153-158 [117] Bosch A, Schmidt K, He JS, et al. Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070. Catena, 2017, 149: 221-231 [118] Nottingham AT, Meir P, Velasquez E, et al. Soil carbon loss by experimental warming in a tropical forest. Nature, 2020, 584: 234-237 [119] Huang MT, Piao SL, Ciais P, et al. Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 2019, 3: 772-779 [120] Lee JY, Chae N, Kim Y, et al. Differential responses of respiration and photosynthesis to air temperature over a moist tundra ecosystem of Alaska and its impact on changing carbon cycle. Environmental Research Communications, 2024, 6: 041003 [121] Tait LW, Schiel DR. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages. PLoS One, 2013, 8: e74413 [122] Chang RY, Liu SG, Chen LY, et al. Soil organic carbon becomes newer under warming at a permafrost site on the Tibetan Plateau. Soil Biology and Biochemistry, 2021, 152: 108074 [123] Ding JZ, Chen YL, Ji CJ, et al. Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 2017, 10: 420-424 |
[1] | 滕雅琳, 李伟明, 王东升, 梁喜欢, 陈金, 叶成龙, 刘满强, 胡水金. 接种蚯蚓条件下施用玄武岩粉对红壤和黄棕壤有机碳的影响 [J]. 应用生态学报, 2025, 36(4): 1003-1012. |
[2] | 王越汉, 王瑞, 李宇, 游成铭, 徐琳, 徐红伟, 谭波, 徐振锋. 华西雨屏区不同林龄柳杉人工林土壤有机碳组分特征 [J]. 应用生态学报, 2025, 36(4): 1024-1034. |
[3] | 段康宁, 黄金权, 刘纪根, 孔赟, 刘小岚, 李威闻, 张露. 洞庭湖流域土壤溶解性有机碳的空间分布及影响因素 [J]. 应用生态学报, 2025, 36(4): 1171-1178. |
[4] | 杨漫婷, 郑美扬, 林松, 杜芳芳, 张峰, 童根平, 傅伟军. 梅花鹿长期活动对植物群落及土壤有机碳累积变化的影响 [J]. 应用生态学报, 2025, 36(3): 811-818. |
[5] | 张浩林, 李娅芸, 胡洋, 李会军, 周玥, 安韶山, 朱兆龙. 不同退化程度高寒草地土壤微生物残体和球囊霉素积累及其对有机碳的贡献 [J]. 应用生态学报, 2025, 36(3): 911-917. |
[6] | 安韶山, 胡洋, 王宝荣. 黄土高原植被恢复中土壤有机碳稳定机制研究进展 [J]. 应用生态学报, 2024, 35(9): 2413-2422. |
[7] | 孙瑞丰, 韩广轩. 模拟增温对土壤有机碳含量、组分和化学结构的影响: 进展与展望 [J]. 应用生态学报, 2024, 35(9): 2432-2444. |
[8] | 刘宁, 鱼舜尧, 张采月, 赵允格. 黄土高原典型维管植物冠层下生物结皮的分布与预测 [J]. 应用生态学报, 2024, 35(9): 2571-2580. |
[9] | 周玥, 李娅芸, 李娜, 李会军, 张羽涵, 安韶山, 王宝荣. 黄土丘陵区降水变化下草地土壤微生物残体碳对土壤有机碳组分的贡献及其影响因素 [J]. 应用生态学报, 2024, 35(9): 2592-2598. |
[10] | 高闻哲, 李廷强. 不同钝化剂对土壤有机碳转化的影响及作用机制研究进展 [J]. 应用生态学报, 2024, 35(8): 2291-2300. |
[11] | 王倩, 袁川, 张亚峰, 胡彦婷, 王一, 郭立, 刘琴, 蔡忠银. 林冠穿透雨空间异质性及其时间稳定性特征的全球量化 [J]. 应用生态学报, 2024, 35(6): 1543-1552. |
[12] | 丁康, 王嘉, 于淼, 李帅, 孟宇飞, 李运远. 邯郸市矿业废弃地的生态修复关键区识别: 基于生态功能与空间的重要性 [J]. 应用生态学报, 2024, 35(6): 1671-1680. |
[13] | 张羽涵, 李瑶, 周玥, 陈圆佳, 安韶山. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征 [J]. 应用生态学报, 2024, 35(3): 639-647. |
[14] | 陈材, 唐光大, 董晓全, 徐颂军. 雷州半岛风水林灌木层优势种群空间分布格局与关联性 [J]. 应用生态学报, 2024, 35(2): 371-380. |
[15] | 窦寒梅, 赵锐锋, 陈喜东, 石晶, 王景发, 刘福寿. 西北干旱区国土空间生态修复优先区识别——以黑河流域张掖市为例 [J]. 应用生态学报, 2024, 35(2): 469-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||