应用生态学报 ›› 2025, Vol. 36 ›› Issue (5): 1553-1566.doi: 10.13287/j.1001-9332.202504.036
王芷瑶1,2,3, 钟玉君1,2,3, 王永峰1,2, 谢柠桧1,2, 张颖2, 江志阳2, 史荣久2, 梁小龙1,2,3*
收稿日期:
2024-10-04
修回日期:
2025-03-05
出版日期:
2025-05-18
发布日期:
2025-11-18
通讯作者:
*E-mail: liangxlucas@outlook.com
作者简介:
王芷瑶, 女, 2001年生, 硕士研究生。主要从事土壤病毒与微生物互作研究。E-mail: 2402951789@qq.com
基金资助:
WANG Zhiyao1,2,3, ZHONG Yujun1,2,3, WANG Yongfeng1,2, XIE Ninghui1,2, ZHANG Ying2, JIANG Zhi-yang2, SHI Rongjiu2, LIANG Xiaolong1,2,3*
Received:
2024-10-04
Revised:
2025-03-05
Online:
2025-05-18
Published:
2025-11-18
摘要: 土壤中复杂而多样的微生物群落与植物之间形成了动态的相互作用网络,对植物的生长、发育、抗逆性及生态适应性具有重要的影响。近年来,有益微生物组(包括根际促生菌、菌根真菌和植物相关噬菌体等)在农业生态系统中的作用逐渐受到关注。有益微生物能与植物建立共生关系,通过促进土壤养分释放、分泌植物激素及调控信号网络,促进植物健康生长,并在增强植物抗盐碱、抗干旱、抗病虫害能力方面发挥关键作用。此外,噬菌体作为植物微生物组的重要组成部分,展现出调控宿主代谢、增强植物抗性以及调节微生物群落平衡的潜在生态功能。然而,当前对植物相关微生物组影响植物生理性状的机制认识不充分,外源微生物的应用在农业实践中也面临着本土微生物竞争、环境适应性及功能稳定性等多方面挑战。本文综述了植物有益微生物组(包括噬菌体)的生态功能在农业中的研究进展,探讨了它们在土壤健康维护、养分循环优化、生物多样性保护及化学品投入减量中的协同作用。同时,结合植物-微生物组-环境互作的复杂机制,提出基于微生物组功能优化的农业可持续发展策略,为实现粮食安全和生态系统平衡提供科学依据。
王芷瑶, 钟玉君, 王永峰, 谢柠桧, 张颖, 江志阳, 史荣久, 梁小龙. 植物有益微生物组的生态功能及其在可持续农业中的应用前景[J]. 应用生态学报, 2025, 36(5): 1553-1566.
WANG Zhiyao, ZHONG Yujun, WANG Yongfeng, XIE Ninghui, ZHANG Ying, JIANG Zhi-yang, SHI Rongjiu, LIANG Xiaolong. Ecological functions of plant-beneficial microbiomes and their application prospects in sustainable agriculture[J]. Chinese Journal of Applied Ecology, 2025, 36(5): 1553-1566.
[1] 谢建引, 曾安, 张洪亮. 中国农作物生产及种业现状与分析. 热带生物学报, 2023, 14(3): 259-267 [2] 贾梦圆, 黄兰媚, 李琦聪, 等. 耕作方式对农田土壤理化性质、微生物学特性及小麦营养品质的影响. 植物营养与肥料学报, 2022, 28(11): 1964-1976 [3] Hao JR, Li Y, Ge Y. Harnessing the plant microbiome for environmental sustainability: From ecological foundations to novel applications. Science of the Total Environment, 2024, 951: 175766 [4] Mathur V, Ulanova D. Microbial metabolites beneficial to plant hosts across ecosystems.Microbial Ecology, 2023, 86: 25-48 [5] Handakumbura PP, Rivas-Ubach A, Battu AK. Visualizing the hidden half: Plant-microbe interactions in the rhizosphere. mSystems, 2021, 6: e0076521 [6] 邵秋玉, 董春波, 韩燕峰, 等. 植物根际微生物组的研究进展. 植物营养与肥料学报, 2021, 27(1): 144-152 [7] Santos LF, Olivares FL. Plant microbiome structure and benefits for sustainable agriculture. Current Plant Bio-logy, 2021, 26: 100198 [8] Singh DP, Maurya S, Satnami L, et al. Roots of resis-tance: Unraveling microbiome-driven plant immunity. Plant Stress, 2024, 14: 100661 [9] Du YL, Han XW, Tsuda K. Microbiome-mediated plant disease resistance: Recent advances and future directions. Journal of General Plant Pathology, 2025, 91: 1-17 [10] Hou S, Thiergart T, Vannier N, et al. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nature Plants, 2021, 7: 1078-1092 [11] Liu HW, Brettell LE, Qiu ZG, et al. Microbiome-media-ted stress resistance in plants. Trends in Plant Science, 2020, 25: 733-743 [12] Wang S, Zhu D, Ge T, et al. Unveiling the top-down control of soil viruses over microbial communities and soil organic carbon cycling: A review. Climate Smart Agriculture, 2024, 1: 100022 [13] 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展. 微生物学报, 2021, 61(2): 231-248 [14] 袁仁文, 刘琳, 张蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展. 中国农学通报, 2020(2): 26-35 [15] 喻其林, 赵梓润, 刘琳. 根际微生物群落功能与调控的研究进展. 微生物学杂志, 2023, 43(5): 1-8 [16] Ajijah N, Fiodor A, Pandey AK, et al. Plant growth-promoting bacteria (PGPB) with biofilm-forming abi-lity: A multifaceted agent for sustainable agriculture. Diversity, 2023, 15: 112 [17] Alotaibi MO, Ikram M, Alotaibi NM, et al. Examining the role of AMF-Biochar in the regulation of spinach growth attributes, nutrients concentrations, and antioxidant enzymes in mitigating drought stress. Plant Stress,2023, 10: 100205 [18] Avis TJ, Gravel V, Antoun H, et al. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry, 2008, 40: 1733-1740 [19] 陈忠男, 王志刚, 徐伟慧. 生防菌在农业中的应用及其机制研究进展. 高师理科学刊, 2022, 42(6): 89-94 [20] 马佳, 李颖, 胡栋, 等. 芽胞杆菌生物防治作用机理与应用研究进展. 中国生物防治学报, 2018, 34(4): 639-648 [21] Zhu L, Huang JM, LuXM, et al. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. Frontiers in Plant Science, 2022, 13:952397 [22] 马洁, 林微渊, 向智文, 等. 植物促生菌提高植物耐盐性的研究进展. 黑龙江农业科学, 2024(1): 108-115 [23] Stewart A, Hill R. Applications of Trichoderma in plant growth promotion. Biotechnology and Biology of Trichoderma, 2014: 415-428 [24] Yaghoubian I, ModarresSanavy SAM, Smith DL. Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content. Plant Physiology and Biochemistry, 2022, 191: 55-66 [25] Huang XF, Chaparro JM, Reardon KF, et al. Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany, 2014, 92: 267-275 [26] Bai B, Liu W, Qiu X, et al. The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 2022, 64: 230-243 [27] Solomon W, Janda T, Molnár Z. Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture. Plant Phy-siology and Biochemistry, 2024, 206: 108290 [28] Santoyo G. How plants recruit their microbiome? New insights into beneficial interactions. Journal of Advanced Research, 2022, 40: 45-58 [29] Vacheron J, Moënne-Loccoz Y, Dubost A, et al. Fluorescent Pseudomonas strains with only few plant-beneficial properties are favored in the maize rhizosphere. Frontiers in Plant Science, 2016, 7: 1212 [30] Tan W, Nian H, Tran LP, et al. Small peptides: Novel targets for modulating plant-rhizosphere microbe interactions. Trends in Microbiology, 2024, 32: 1072-1083 [31] Wu L, Weston LA, Zhu S, et al. Editorial: rhizosphere interactions: Root exudates and the rhizosphere micro-biome. Frontiers in Plant Science, 2023, 14: 1281010 [32] Zhang YL, Gan G, Li YR, et al. Exploring the temporal dynamics of a disease suppressive rhizo-microbiome in eggplants. iScience, 2024, 27: 110319 [33] Mannaa M, Han G, Jung H, et al. Aureobasidium pullulans treatment mitigates drought stress in Abies koreana via rhizosphere microbiome modulation. Plants, 2023, 12: 3653 [34] Wang XL, Feng H, Wang YY, et al. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Molecular Plant, 2021, 14: 503-516 [35] Shi XY, Zhao YG, Xu MW, et al. Insights into plant-microbe interactions in the rhizosphere to promote sustainable agriculture in the new crops era. New Crops, 2024, 1: 100004 [36] Parasar BJ, Sharma I, Agarwala N. Root exudation drives abiotic stress tolerance in plants by recruiting beneficial microbes. Applied Soil Ecology, 2024, 198: 105351 [37] Zhang T, Jian Q, Yao X, et al. Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon, 2024, 10: e31553 [38] Saeed Q, Wang XK, Haider FU, et al. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 2021, 22: 10529 [39] Nagrale DT, Chaurasia A, Kumar S, et al. PGPR: The treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology and Biotechnology, 2023, 39: 100 [40] Hyder S, Gondal AS, Riaz N, et al. Plant growth promoting rhizobacteria (PGPR): A green approach to manage soil-borne fungal pathogens and plant growth promotion. Microbial Technology for Agro-Ecosystems,2024: 153-176 [41] 穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展. 生命科学, 2022, 34(2): 118-127 [42] Bhat BA, Tariq L, Nissar S, et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. Journal of Applied Microbio-logy, 2022, 133: 2717-2741 [43] Haldar S, Sengupta S. An overview of the multifaceted role of plantgrowth-promoting microorganisms and endophytes in sustainable agriculture: Developments and prospects. Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate, 2023: 179-208 [44] 万水霞, 王静, 李帆, 等. 玉米根际高效溶磷菌的筛选、鉴定及促生效应研究. 生物技术通报, 2020, 36(5): 98-103 [45] Wang Y, Li WQ, Du BH, et al. Effect of biochar applied with plant growth-promoting rhizobacteria (PGPR) on soil microbial community composition and nitrogen utilization in tomato. Pedosphere, 2021, 31: 872-881 [46] Park S, Kim AL, Hong YK, et al. A highly efficient auxin-producing bacterial strain and its effect on plant growth. Journal of Genetic Engineering and Biotechno-logy, 2021, 19: 1-9 [47] Pantoja-Guerra M, Valero-Valero N, Ramírez CA. Total auxin level in the soil-plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chemical and Biological Technologies in Agriculture, 2023, 10: 6 [48] Chowdhury FT, Zaman NR, Islam MR, et al. Anti-fungal secondary metabolites and hydrolytic enzymes from rhizospheric bacteria in crop protection: A review. Journal of Bangladesh Academy of Sciences, 2021, 44: 69-84 [49] Devi B, Tiwari M, Yadav N, et al. Intergenerational immune priming: Harnessing plant growth promoting rhizobacteria (PGPR) for augmented wheat protection against spot blotch. Physiological and Molecular Plant Pathology, 2023, 128: 102164 [50] 张利亚, 李嫚. PGPR作用机制及其在农业上的应用研究进展. 现代农业科技, 2019(24): 142-146 [51] 刘艳霞, 陶正朋, 李想, 等. 抗青枯病型根际促生菌(PGPR)菌群构建及其生物防控机制. 微生物学报, 2023, 63(3): 1099-1114 [52] 邓声坤, 雷锋杰, 龙漪萍, 等. 细菌铁载体拮抗植物病原真菌及促生作用研究进展. 微生物学通报, 2023, 50(7): 3198-3210 [53] 杨倩, 薛璐, 郭慧, 等. 植物根际促生菌防治黄瓜枯萎病的研究进展. 中国瓜菜, 2022, 35(1): 1-8 [54] 何铁光, 杨雯馨, 林崇宝, 等. 促进植物生长根圈细菌(PGPR)的研究现状. 湖南生态科学学报, 2014, 1(4): 45-49 [55] Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth Environment, 2023, 4: 4-18 [56] Wu HW, Cui HL, Fu CX, et al. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Science of the Total Environment, 2024, 909: 168627 [57] Liu Y, Shu X, Chen L, et al. Plant commensal type Ⅶ secretion system causes iron leakage from roots to promote colonization. Nature Microbiology, 2023, 8: 1434-1449 [58] 葛毅, 徐绍辉, 徐岩. 根际微生物组组合影响因素研究进展. 浙江农业学报, 2019, 31(12): 2120-2130 [59] Mawarda PC, Le-Roux X, Van-Elsas JD, et al. Delibe-rate introduction of invisible invaders: A critical apprai-sal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry, 2020, 148: 107874 [60] Wang ZK, Fu XX, Eiko EK. Insight into farming native microbiome by bioinoculant in soil-plant system. Microbiological Research, 2024, 285: 127776 [61] Wu N, Li Z, Tang M. Impact of salt and exogenous AM inoculation on indigenous microbial community structure in the rhizosphere of dioecious plant, Populus catha-yana. Scientific Reports, 2021, 11: 18403 [62] 孙真, 郑亮, 邱浩斌. 植物根际促生细菌定殖研究进展. 生物技术通报, 2017, 33(2): 8-15 [63] 白莹, 周柳婷, 张晨, 等. 外源微生物对木麻黄幼苗生长和土壤微生物群落的影响. 应用生态学报, 2021, 32(8): 2939-2948 [64] Li C, Chen XL, Jia ZH, et al. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nature Ecology & Evolution, 2024, 8: 1270-1284 [65] Han HM, Liu H, Zhang B, et al. Competitive relationships due to similar nutrient preferences reshape soil bacterial metacommunities. Science of the Total Environment, 2024, 933: 172956 [66] 黄文茂, 韩丽珍, 王欢. 两株芽孢杆菌对花生幼苗生长及其根际土壤微生物群落结构的影响. 微生物学通报, 2020, 47(11): 3551-3563 [67] Zheng Y, Gong X. Niche differentiation rather than biogeography shapes the diversity and composition of microbiome of Cycas panzhihuaensis.Microbiome, 2019, 7: 152 [68] Wu D, Wang WX, Yao YP, et al. Microbial interactions within beneficial consortia promote soil health. Science of the Total Environment, 2023, 900: 165801 [69] Zhu L, Zhao YX, Zhou M, et al. Inoculation enhances directional humification by increasing microbial interaction intensity in food waste composting. Chemosphere, 2023, 322: 138191 [70] 段海霞, 师茜, 康生萍, 等. 丛枝菌根真菌和根瘤菌与植物共生研究进展. 草业学报, 2024, 33(5): 166-182 [71] Cunha IC, Silva AV, Boleta EH, et al. The interplay between the inoculation of plant growth-promoting rhizobacteria and the rhizosphere microbiome and their impact on plant phenotype. Microbiological Research, 2024, 283: 127706 [72] Lv TX, Zhan CF, Pan QQ, et al. Plant pathogenesis: Toward multidimensional understanding of the micro-biome. iMeta, 2023, 2: e129 [73] Philippot L, Chenu C, Kappler A, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2024, 22: 226-239 [74] Hnini M, Rabeh K, Oubohssaine M. Interactions between beneficial soil microorganisms (PGPR and AMF) and host plants for environmental restoration: A systema-tic review. Plant Stress, 2024, 11: 100391 [75] Duan HX, Luo CL, Zhou R, et al. AM fungus promotes wheat grain filling via improving rhizospheric water & nutrient availability under drought and low density. Applied Soil Ecology, 2024, 193: 105159 [76] Li M, Wei Z, Wang JN, et al. Facilitation promotes invasions in plant-associated microbial communities. Ecology Letters, 2019, 22: 149-158 [77] 周萌, 张嘉俊, 罗洋. 微生物肥料的作用机理、现状及展望. 中国农学通报, 2023, 39(33): 68-75 [78] 袁雅文. 有益微生物作用机理及微生物菌肥的应用前景. 杂交水稻, 2022, 37(4): 7-14 [79] Streletskii RA, Astaykina AA, Belov AA, et al. Beneficial soil microorganisms and their role in sustainable agriculture. Sustainable Agricultural Practices, 2024, 293-333 [80] Liang X, Zhu Y, Liu HY, et al. Nitrogen-fixing cyanobacteria enhance microbial carbon utilization by modulating the microbial community composition in paddy soils of the Mollisols region. Science of the Total Environment, 2024, 929: 172609 [81] Alori ET, Glick BR, Babalola OO. Microbial phospho-rus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 2017, 8: 971 [82] Yang Y, Li T, Wang YQ, et al. Linkage between soil ectoenzyme stoichiometry ratios and microbial diversity following the conversion of cropland into grassland. Agriculture, Ecosystems & Environment, 2021, 314: 107418 [83] Elnahal ASM, El-Saadony MT, Saad AM, et al. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 2022, 162: 759-792 [84] Wang HX, Hao ZP, Zhang X, et al. Arbuscular mycorrhizal fungi induced plant resistance against Fusarium wilt in jasmonate biosynthesis defective mutant and wild type of tomato. Journal of Fungi, 2022, 8: 422 [85] 董艳, 董坤, 杨智仙, 等. AM真菌控制蚕豆枯萎病发生的根际微生物效应. 应用生态学报, 2016, 27(12): 4029-4038 [86] Wang L, Chen X, Tang ZH. Arbuscular mycorrhizal symbioses improved biomass allocation and reproductive investment of cherry tomato after root-knot nematodes infection. Plant and Soil, 2023, 482: 513-527 [87] Dimkić I, Janakiev T, Petrović M, et al. Plant-associa-ted Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms: A review. Physiological and Molecular Plant Pathology, 2022, 117: 101754 [88] Kotan R, Sahin F, Demirci E, et al. Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biological Control, 2009, 50: 194-198 [89] Mougou I, Boughalleb MN. Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egyptian Journal of Biological Pest Control, 2018, 28: 60 [90] 蔡祖聪, 黄新琦, 赵军. 作物土传病害防控的健康微生物群落构建原理与实践. 土壤学报, 2023, 60(5): 1213-1220 [91] Li QJ, Zhang DQ, Song ZX, et al. Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation. Environmental Pollution, 2022, 295: 118653 [92] González GM, Cellini F, Fotopoulos V, et al. New approaches to improve crop tolerance to biotic and abiotic stresses. Physiologia Plantarum, 2022, 174: e13547 [93] Ahmad B, Raina A, Khan S. Impact of biotic and abiotic stresses on plants, and their responses// Wani SH, ed. Disease Resistance in Crop Plants: Molecular, Genetic and Genomic Perspectives. Berlin: Springer Cham, 2019: 1-19 [94] Rejeb IB, Pastor V, Mauch-Mani B. Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants, 2014, 3: 458-475 [95] 李菁, 张小飞, 张惠雯, 等. 盐胁迫对白及根际细菌群落组成及多样性的影响. 应用生态学报, 2024, 35(1): 219-228 [96] Chilakala AR, Pandey P, Durgadevi A, et al. Drought attenuates plant responses to multiple rhizospheric pathogens: A study on a dry root rot-associated disease complex in chickpea fields. Field Crops Research, 2023, 298: 108965 [97] Sánchez BM, Del PJC, Pernas M. Effects of combined abiotic stresses related to climate change on root growth in crops. Frontiers in Plant Science, 2022, 13: 918537 [98] Ahmed IM, Dai HX, Zheng WT, et al. Genotypic differences in physiological characteristics in the tole-rance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 2013, 63: 49-60 [99] Liu HW, Li JY, Carvalhais LC, et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytologist, 2021, 229: 2873-2885 [100] Shi JC, Wang XL, Wang ET. Mycorrhizal symbiosis in plant growth and stress adaptation: From genes to ecosystems. Annual Review of Plant Biology, 2023, 74: 569-607 [101] Wen T, Yuan J, He XM, et al. Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion. Horticulture Research, 2020, 7: 154 [102] Liu YP, Chen L, Zhang N, et al. Plant-microbe communication enhances auxin biosynthesis by a root-asso-ciated bacterium, Bacillus amyloliquefaciens SQR9. Molecular Plant-Microbe Interactions, 2016, 29: 324-330 [103] Wen T, Zhao ML, Yuan J, et al. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecology Letters, 2021, 3: 42-51 [104] Manoj SR, Karthik C, Kadirvelu K, et al. Understan-ding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management, 2020, 254: 109779 [105] Chen JX, Guo JW, Yang ZX, et al. The application of fertilizer and AMF promotes growth and reduces the cadmium and lead contents of ryegrass (Lolium multiflorum L.) in a copper mining area. Phyton, 2022, 92: 471-485 [106] 周益帆, 白寅霜, 岳童, 等. 植物根际促生菌促生特性研究进展. 微生物学通报, 2023, 50(2): 644-666 [107] Tak HI, Ahmad F, Babalola OO. Advances in the app-lication of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Reviews of Environmental Contamination and Toxicology, 2013, 223: 33-52 [108] Mani R, Noriharu A, Majeti NVP, et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 2010, 28: 142-149 [109] Chen YM, Chao YQ, Li YY, et al. Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Applied and Environmental Microbiology, 2016, 82: 1734-1744 [110] Mohammadzadeh A, Tavakoli M, Motesharezadeh B, et al. Effects of plant growth-promoting bacteria on the phytoremediation of cadmium-contaminated soil by sunflower. Archives of Agronomy and Soil Science, 2016, 63: 807-816 [111] Ma B, Wang YL, Zhao KK, et al. Biogeographic patterns and drivers of soil viromes. Nature Ecology & Evolution, 2024, 8: 717-728 [112] Yakov K, Kyle MJ. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biology and Biochemistry, 2018, 127: 305-317 [113] Tong D, Wang YJ, Yu HD, et al. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. The ISME Journal, 2023, 17: 1247-1256 [114] Liang XL, Radosevich M, DeBruyn JM, et al. Incorporating viruses into soil ecology: A new dimension to understand biogeochemical cycling. Critical Reviews in Environmental Science and Technology, 2023, 54: 117-137 [115] Wang FY, Zhang HQ, Liu HW, et al. Combating wheat yellow mosaic virus through microbial interactions and hormone pathway modulations. Microbiome, 2024, 12: 200 [116] Wang XF, Wei Z, Yang KM, et al. Phage combination therapies for bacterial wilt disease in tomato. Nature Biotechnology, 2019, 37: 1513-1520 [117] Yang KM, Wang XF, Hou RJ, et al. Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease. Microbiome, 2023, 11: 16 [118] Huang D, Xia R, Chen CY, et al. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. Trends in Microbiology, 2024, 32: 902-916 |
[1] | 张仲富, 王禹童, 艾静, 刀静梅, 李傲梅, 邓军, 吴建明, 赵勇. 钾肥对甘蔗根际微生物多样性和群落构建过程的影响 [J]. 应用生态学报, 2025, 36(2): 526-536. |
[2] | 张清, 项春铸, 田佳怡, 江明君, 房翠莲, 李全, 曹婷婷, 宋新章. 毛竹篼根和鞭根解磷细菌对磷添加的响应 [J]. 应用生态学报, 2025, 36(1): 284-292. |
[3] | 包文杰, 申凌婕, 夏尚文, 杨效东. pH对木霉菌和镰刀菌生长及其竞争的影响 [J]. 应用生态学报, 2024, 35(9): 2535-2542. |
[4] | 储薇, 王炎炎, 郭玥, 彭艳晖, 吴则焰, 林文雄. 木麻黄根际促生菌的筛选及对种子萌发和幼苗生长的影响 [J]. 应用生态学报, 2024, 35(8): 2159-2166. |
[5] | 华喆, 自海云, 廖杨文科, 唐罗忠, 李孝刚. 调控林木生长的根际微生物功能过程及其影响因素研究进展 [J]. 应用生态学报, 2024, 35(11): 3190-3198. |
[6] | 吴思炫, 高复云, 张锐澎, 苏浩, 姚槐应, 范雪莲, 李雅颖. 番茄青枯病生物防治的研究进展 [J]. 应用生态学报, 2023, 34(9): 2585-2592. |
[7] | 杨富玲, 石杨, 李斌, 杜志烨, 汪梦婷, 廖恒毅, 陈稷, 黄进. 植物根系分泌物在污染及沙化土壤修复中的应用现状与前景 [J]. 应用生态学报, 2021, 32(7): 2623-2632. |
[8] | 李晓芳, 田叶韩, 彭海莹, 何邦令, 高克祥. 防治苦瓜枯萎病的拮抗放线菌分离筛选及鉴定 [J]. 应用生态学报, 2020, 31(11): 3869-3879. |
[9] | 李健, 李肖鹤, 后文, 郑沈, 朱向东. 榕树根际土壤广谱拮抗菌株的筛选、鉴定及特性 [J]. 应用生态学报, 2019, 30(11): 3894-3902. |
[10] | 刘桂要,陈莉莉,袁志友. 氮添加对黄土丘陵区油松人工林根际土壤微生物群落结构的影响 [J]. 应用生态学报, 2019, 30(1): 117-126. |
[11] | 陈雅敏, 余再鹏, 王民煌, 万晓华, 刘瑞强, 桑昌鹏, 宋蒙亚, 熊佳. 亚热带米老排和杉木细根分解过程中养分与微生物群落组成的变化 [J]. 应用生态学报, 2018, 29(5): 1635-1644. |
[12] | 吴亚胜, 郭世荣, 张杰, 杜南山, 孙锦. 亚精胺和丛枝菌根真菌对黄瓜生长的影响 [J]. 应用生态学报, 2018, 29(3): 891-898. |
[13] | 李培谦,冯宝珍,李新秀,郝浩永. 番茄灰霉菌拮抗放线菌LA-5的筛选及鉴定 [J]. 应用生态学报, 2018, 29(12): 4172-4180. |
[14] | 刘丽英,丁文龙,曹雅杰,尤鸿基,刘珂欣,孙中涛,毛志泉. 苹果连作生防细菌B6对平邑甜茶幼苗生物量及连作土壤环境的影响 [J]. 应用生态学报, 2018, 29(12): 4165-4171. |
[15] | 马志良, 赵文强, 刘美, 朱攀, 刘庆. 土壤呼吸组分对气候变暖的响应研究进展 [J]. 应用生态学报, 2018, 29(10): 3477-3486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||