[1] Leach JE, Triplett LR, Argueso CT, et al. Communication in the phytobiome. Cell, 2017, 169: 587-596 [2] Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and pro-spects for utilization. Soil Biology and Biochemistry, 2010, 42: 669-678 [3] Hestrin R, Hammer EC, Mueller CW, et al. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Communications Biology, 2019, 2: 233 [4] Redman R, Sheehan K, Stout R, et al. Thermotolerance generated by plant/fungal symbiosis. Science, 2002, 298: 1581 [5] Hiruma K, Gerlach N, Sacristán S, et al. Root endophyte colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell, 2016, 165: 464-474 [6] 邢亚薇, 李春越, 刘津, 等. 长期施肥对黄土旱塬农田土壤微生物丰度的影响. 应用生态学报, 2019, 30(4): 1351-1358 [7] Weng WF, Yan J, Zhou ML, et al. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms, 2022, 10: 1266 [8] Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 2023, 4: 4-18 [9] McGill BJ, Etienne RS, Gray JS, et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 2007, 10: 995-1015 [10] Alahuhta J, Johnson L, Olker J, et al. Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecological Complexity, 2014, 20: 61-68 [11] Sorte CJ, Davidson VE, Franklin MC, et al. Long-term declines in an intertidal foundation species parallel shifts in community composition. Global Change Biology, 2017, 23: 341-352 [12] Pester M, Bittner N, Deevong P, et al. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME Journal, 2010, 4: 1591-1602 [13] Sun RB, Zhang XX, Guo XS, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 2015, 88: 9-18 [14] Huang Z, Zhou W, Junhua A, et al. Sugarcane yield and soil potassium balance after 4 consecutive years of potassium application. Journal of Tropical Crops, 2020, 41: 1347-1353 [15] 谢金兰, 李长宁, 李毅杰, 等. 钾肥施用量对甘蔗产量、糖分积累及其抗逆性的效应研究. 中国土壤与肥料, 2019(2): 133-138 [16] Coba T, Fedorova E, Pueyo J, et al. The symbiosome: Legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Frontiers in Plant Science, 2018, 8: 2229 [17] 张仲富, 喻庆国, 王行, 等. 植物群落和土壤理化性质对碧塔海湿地土壤细菌群落的影响. 应用生态学报, 2021, 32(6): 2199-2208 [18] Yan K, Lu DS, Ding CJ, et al. Rare and abundant bacterial communities in poplar rhizosphere soils respond differently to genetic effects. Science of the Total Environment, 2024, 908: 168216 [19] Sardans J, Peñuelas J. Potassium: A neglected nutrient in global change. Global Ecology and Biogeography, 2015, 24: 261-275 [20] Safavi Fard N, Heidari Sharif Abad H, Shirani Rad AH, et al. Effect of drought stress on qualitative characteristics of canola cultivars in winter cultivation. Industrial Crops and Products, 2018, 114: 87-92 [21] Ho CH, Lin SH, Hu HC, et al. Chl1 functions as a nitrate sensor in plants. Cell, 2009, 138: 1184-1194 [22] Liu KH, Tsay YF. Switching between the two action modes of the dual-affinity nitrate transporter Chl1 by phosphorylation. EMBO Journal, 2003, 22: 1005-1013 [23] 滕泽栋, 李敏, 朱静, 等. 野鸭湖湿地芦苇根际微生物多样性与磷素形态关系. 环境科学, 2017, 38(11): 4589-4597 [24] 陈燕艳. 海南不同种植区胆木叶片营养、土壤养分与根际微生物研究. 硕士论文. 海口: 海南大学, 2023 [25] 邓永兴, 王文亮, 周苏玫, 等. 小麦根际解钾微生物与土壤钾含量、钾素利用率及根系活力的关系. 植物营养与肥料学报, 2021, 27(6): 1027-1043 [26] 李琦, 裴怀弟, 马忠明, 等. 钾肥与有机肥配施对食用百合根际土壤酶活性、养分含量及鳞茎产量的影响. 中国土壤与肥料, 2020(1): 91-99 [27] 李文龙, 赵猛, 顾万荣, 等. 沼肥与钾肥配施对玉米叶片抗氧化酶及土壤酶活性的影响. 南方农业学报, 2017, 48(10): 1782-1788 [28] Cusack DF, Silver WL, Torn MS, et al. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology, 2011, 92: 621-632 [29] Wu LP, Wang YD, Zhang SR, et al. Fertilization effects on microbial community composition and aggregate formation in saline-alkaline soil. Plant and Soil, 2021, 463: 523-535 [30] 刘晓利, 樊剑波, 蒋瑀霁, 等. 不同施肥制度甘蔗地土壤养分对微生物群落结构的影响. 生态学报, 2018, 38(16): 5242-5248 [31] 黄雪娇, 王菲, 谷守宽. 钾肥及与秸秆配施对紫色土作物产量和微生物群落结构的影响. 生态学报, 2018, 38(16): 5792-5799 [32] Feng YZ, Guo ZY, Zhong LH, et al. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in North China. Frontiers in Microbiology, 2017, 8: 2376 [33] Pool TK, Grenouillet G, Villéger S. Species contribute differently to the taxonomic, functional, and phylogene-tic alpha and beta diversity of freshwater fish communities. Diversity and Distributions, 2014, 20: 1235-1244 [37] Wu WX, Logares R, Huang BQ, et al. Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environmental Microbio-logy, 2017, 19: 287-300 [38] Xiong C, Lu YH. Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. Environmental Microbiology Reports, 2022, 14: 833-849 [39] Kivlin SN, Winston GC, Goulden ML, et al. Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecology, 2014, 12: 14-25 |