欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (5): 1413-1421.doi: 10.13287/j.1001-9332.202505.015

• • 上一篇    下一篇

土壤有机质对卡马西平迁移影响的模拟

韩梦园1,2, 陈奉献1, 石亚楠1, 陈希娟1*   

  1. 1中国科学院沈阳应用生态研究所, 沈阳 110016;
    2中国科学院大学, 北京 100049
  • 收稿日期:2024-10-08 修回日期:2025-03-27 出版日期:2025-05-18 发布日期:2025-11-18
  • 通讯作者: *E-mail: chenxj@iae.ac.cn
  • 作者简介:韩梦园, 女, 1999年生, 硕士研究生。主要从事污染物迁移归趋的模型模拟研究。E-mail: hanmengyuan99@gmail.com
  • 基金资助:
    黑土地保护与利用科技创新工程专项(XDA28090100)

Simulation of the effect of soil organic matter on carbamazepine transport

HAN Mengyuan1,2, CHEN Feng-xian1, SHI Yanan1, CHEN Xijuan1*   

  1. 1Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-10-08 Revised:2025-03-27 Online:2025-05-18 Published:2025-11-18

摘要: 卡马西平是药品和个人护理用品类污染物的典型代表,是环境中检测到最多的药物之一,易通过再生水灌溉、污泥土地利用等方式迁移至土壤和地下水。目前土壤有机质对卡马西平迁移影响的研究较少。本研究以卡马西平为对象,采用室内饱和土柱试验,结合Comsol Multiphysics软件对比分析了卡马西平在高有机质(22.7 g·kg-1)和低有机质(8.0 g·kg-1)土壤中迁移能力的差异,为预测和评估再生水灌溉引起的农田土壤和地下水污染风险提供理论依据。结果表明: 土壤有机质含量显著影响卡马西平的迁移能力。高有机质土壤中,卡马西平的迁移能力较弱,初始穿透时间较长(2.86 h);低有机质土壤中,卡马西平的迁移能力较强,初始穿透时间较短(1.67 h)。采用数值模拟的方法模拟卡马西平在土柱内的动态迁移过程,结果显示,100 h内,高有机质土壤对卡马西平具有更高的吸附率(5.54×10-8 mol·m-3·s-1)和吸附量(6.85×10-5 mol·kg-1),这可能是因为高有机质土壤具有更大的表面积及更多的吸附位点;而低有机质土壤的吸附速率较低(3.03×10-8 mol·m-3·s-1)、吸附量较小(5.44×10-5 mol·kg-1),使得卡马西平迁移更迅速。综上,有机质是影响卡马西平在土壤中迁移的关键因素,低有机质土壤中卡马西平的迁移扩散风险更高。Comsol Multiphysics软件模拟的动态迁移过程可作为传统试验数据的良好补充。本研究可为预测自然土壤中卡马西平的迁移风险提供理论依据。

关键词: 卡马西平, 土壤有机质, 动态迁移, Comsol Multiphysics

Abstract: Carbamazepine, one of the most frequently detected pharmaceuticals in the environment, is a representa-tive pollutant in the category of pharmaceuticals and personal care products. It can easily enter soil and groundwater through recycled water irrigation and sludge application. However, the impact of soil organic matter on the transport of carbamazepine remains unknown. We investigated the transport behavior of carbamazepine using indoor saturated soil column experiments, complemented by simulations performed with Comsol Multiphysics. We compared the transport capacity of carbamazepine in high organic matter soil (22.7 g·kg-1) and low organic matter soil (8.0 g·kg-1), aiming to analyze the differences in carbamazepine transport and provide a theoretical basis for assessing agricultural soil and groundwater contamination risks associated with recycled water irrigation. The results showed that soil organic matter significantly affected the transport capacity of carbamazepine. In soil with high organic matter, carbamazepine exhibited weaker mobility, with a longer initial breakthrough time (2.86 h). In contrast, in soil with low organic matter, carbamazepine had stronger mobility, a shorter initial breakthrough time (1.67 h). The dynamic transport process of carbamazepine in soil column was simulated by numerical simulation. The results showed that high organic matter soil had a higher adsorption rate (5.54×10-8 mol·m-3·s-1) and adsorption amount (6.85×10-5 mol·kg-1 ), likely due to its larger surface area and greater number of adsorption sites. In contrast, low organic matter soil exhibited a lower adsorption rate (3.03×10-8 mol·m-3·s-1) and lower adsorption capacity (5.44×10-5 mol·kg-1), leading to faster transport. In summary, soil organic matter plays a crucial role in regulating carbamazepine transport. The transport and diffusion risk of carbamazepine is higher in low organic matter soils. Furthermore, numerical simulations using Comsol Multiphysics could effectively complement traditional experimental data, providing a valuable tool for predicting the environmental fate of carbamazepine in natural soils.

Key words: carbamazepine, soil organic matter, dynamic transport, Comsol Multiphysics