欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (5): 1496-1506.doi: 10.13287/j.1001-9332.202505.026

• • 上一篇    下一篇

基于CMIP6模式的未来气候情景下北半球多年冻土动态

田齐萱1,2, 刘建朝3, 曾凡超1,4, 杨茗1, 汤钦荣1,5, 郑洁1,2, 左云江1, 王楠楠1, 尧晓晨1, 宋艳宇1*   

  1. 1中国科学院东北地理与农业生态研究所黑土地保护与利用重点实验室, 长春 130102;
    2中国科学院大学, 北京 100049;
    3吉林建筑大学测绘与勘查工程学院, 长春 130118;
    4鲁东大学水利土木学院, 山东烟台 264025;
    5东北师范大学地理科学学院, 长春 130024
  • 收稿日期:2024-12-16 修回日期:2025-03-11 出版日期:2025-05-18 发布日期:2025-11-18
  • 通讯作者: *E-mail: songyanyu@iga.ac.cn
  • 作者简介:田齐萱, 男, 1999年生, 硕士研究生。主要从事全球变化和多年冻土研究。E-mail: tianqixuan@iga.ac.cn
  • 基金资助:
    国家自然科学基金重大项目(42494823)、国家重点研发计划项目(2024YFF0808703)、吉林省第二十批创新创业人才项目、吉林省留学人员科技创新创业项目和黑土地保护与利用重点实验室青年创新项目(2023HTDGZ-QN-03)

Permafrost dynamics in the Northern Hemisphere under future climate scenarios based on CMIP6

TIAN Qixuan1,2, LIU Jianzhao3, ZENG Fanchao1,4, YANG Ming1, TANG Qinrong1,5, ZHENG Jie1,2, ZUO Yunjiang1, WANG Nannan1, YAO Xiaochen1, SONG Yanyu1*   

  1. 1Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
    2University of Chinese Academy of Sciences, Beijing 100049, China;
    3College of Surveying and Exploration Enginee-ring, Jilin Jianzhu University, Changchun 130118, China;
    4School of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, Shandong, China;
    5School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
  • Received:2024-12-16 Revised:2025-03-11 Online:2025-05-18 Published:2025-11-18

摘要: 全球变暖对北半球多年冻土的影响日益显著,多年冻土退化是现代冰冻圈中与气候变化相关的最紧迫问题之一。本研究基于15种不同地球系统模式(ACCESS-CM2、ACCESS-ESM1-5、BCC-CSM2-MR、CanESM5、CESM2、CESM2-WACCM、EC-Earth3、FGOALS-f3-L、IPSL-CM6A-LR、MIROC6、MPI-ESM1-2-HR、MPI-ESM1-2-LR、MRI-ESM2-0、NorESM2-LM、NorESM2-MM)的CMIP6土壤温度数据,分析了未来不同排放情境(SSP126、SSP245、SSP370和SSP585)下北半球多年冻土面积和活动层厚度(ALT)的时空格局,重点解析了影响ALT变化的主要环境驱动因子。结果表明: 各地球系统模式(ESM)对ALT的模拟能力差异显著。基于性能最优的4个ESM(MPI-ESM1-2-LR、ACCESS-ESM1-5、MPI-ESM1-2-HR和BCC-CSM2-MR)分析发现,2015—2100年间,高排放情境(SSP370、SSP585)下多年冻土面积减少速率显著加快,SSP585情境下冻土面积消退速率为SSP126情境的8倍;SSP126情境下多年冻土面积增加,SSP245、SSP370和SSP585情境下则持续减少。ALT在未来所有情境下均显著增加,最高排放情境SSP585的年增速是最低排放情景SSP126的22倍。每年冻土融化结束时间将逐渐从9月推移至11月,导致冻土融化持续时间逐渐增加。作为关键影响因素,空气温度、空气湿度、植被叶面积指数、积雪和风速在研究区大部分区域对冻土退化表现为明显正效应,土壤水分表现为负效应。未来通过控制温室气体排放,可以明显延缓冻土退化过程,降低北半球多年冻土面临的快速消融风险。

关键词: CMIP6, 多年冻土, 活动层厚度, 气候变化, 冻土退化

Abstract: Global warming is increasingly affecting permafrost in the Northern Hemisphere, with permafrost degradation being one of the most serious consequences of climate change on the cryosphere. Based on the CMIP6 soil temperature data from 15 different earth system models (ESMs) (ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, CESM2-WACCM, EC-Earth3, FGOALS-f3-L, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM), we analyzed the spatiotemporal variations of the permafrost area and active layer thickness (ALT) in the Northern Hemisphere under different future emission scenarios (SSP126, SSP245, SSP370, and SSP585), aiming to clarify the main environmental driving factors affecting the changes in ALT. Results showed significant discrepancies in the simulation capabilities of ALT across ESMs. Based on the analysis of the four optimal performance ESMs (MPI-ESM1-2-LR, ACCESS-ESM1-5, MPI-ESM1-2-HR, and BCC-CSM2-MR), we found that the reduction rate of permafrost area significantly accele-rated from 2015 to 2100 under high emission scenarios (SSP370, SSP585), and the rate of permafrost area decline under SSP585 scenario was eight times that of SSP126 scenario. The permafrost area would increase under SSP126 scenario, but it would continue to decrease under SSP245, SSP370, and SSP585 scenarios. ALT was projected to increase significantly under all four scenarios, with the annual increasing rate under SSP585 being 22 times higher than SSP126. Furthermore, we found that the end time of annual permafrost thawing would gradually change from September to November, leading to an extension of the thawing period. Key factors, such as air temperature, air humidity, vegetation leaf area index, snow cover, and wind speed showed positive effects on permafrost degradation in most regions, while soil moisture showed negative effect. Overall, future greenhouse gas emission controls would offer potential pathways to mitigate the risk of rapid permafrost degradation in the Northern Hemisphere.

Key words: CMIP6, permafrost, active layer thickness, climate change, permafrost degradation