[1] Zhao J, Yue C, Wang JM, et al. Forest fire size amplifies postfire land surface warming. Nature, 2024, 633: 828-834 [2] 齐方忠, 殷继艳, 武英达, 等. 智利森林火灾剖析与全球应对策略. 中国应急管理, 2024(3): 46-49 [3] 刘桂民, 张博, 王莉, 等. 全球和我国多年冻土分布范围和实际面积研究进展. 地球科学, 2023, 48(12): 4689-4698 [4] Chadburn SE, Burke EJ, Cox PM, et al. An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 2017, 7: 340-344 [5] 李晓英, 金会军, 何瑞霞, 等. 森林大火对冻土环境影响的研究进展. 冰川冻土, 2017, 39(2): 317-327 [6] Rebi A, Wang G, Irfan M, et al. Unraveling the impact of wildfires on permafrost ecosystems: Vulnerability, implications, and management strategies. Journal of Environmental Management, 2024, 358: 120917 [7] Ludwig SM, Alexander HD, Kielland K, et al. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest. Global Change Bio-logy, 2018, 24: 5841-5852 [8] 及利, 马立新, 程政磊, 等. 大兴安岭北部不同海拔天然林土壤胞外酶化学计量特征及其季节动态. 应用生态学报, 2020, 31(8): 2491-2499 [9] Pei JM, Wan JR, Wang H, et al. Changes in the acti-vity of soil enzymes after fire. Geoderma, 2023, 437: 116599 [10] Enowashu E, Poll C, Lamersdorf N, et al. Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil. Applied Soil Ecology, 2009, 43: 11-21 [11] Knelman JE, Graham EB, Ferrenberg S, et al. Rapid shifts in soil nutrients and decomposition enzyme activity in early succession following forest fire. Forests, 2017, 8: 347 [12] 于群英. 土壤磷酸酶活性及其影响因素研究. 安徽技术师范学院学报, 2001(4): 5-8 [13] 陶玉柱. 火对塔河森林土壤微生物及酶活性的干扰作用. 博士论文. 哈尔滨: 东北林业大学, 2014 [14] Liu C, Song YY, Dong XF, et al. Soil enzyme activities and their relationships with soil C, N, and P in peatlands from different types of permafrost regions, Northeast China. Frontiers in Environmental Science, 2021, 9: 670769 [15] 代海燕, 陈素华, 武艳娟, 等. 内蒙古大兴安岭生态功能区冷暖季节气候变化趋势分析. 冰川冻土, 2016, 38(3): 645-652 [16] 张瑶. 大兴安岭26年间林火对森林植被碳收支的影响. 硕士论文. 哈尔滨: 东北林业大学, 2009 [17] 李晓英, 金会军, 何瑞霞, 等. 多年冻土区森林大火对生态服务功能的影响研究. 气候变化研究进展, 2020, 16(5): 545-554 [18] White JD, Ryan KC, Key CC, et al. Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire, 1996, 6: 125-136 [19] Brewer CK, Winne J, Redmond R, et al. Classifying and mapping wildfire severity: A comparison of methods. Photogrammetric Engineering and Remote Sensing, 2005, 71: 1311-1320 [20] Dunn C, Jones TG, Girard A, et al. Methodologies for extracellular enzyme assays from wetland soils. Wetlands, 2014, 34: 9-17 [21] Shi L, Dech JP, Liu HY, et al. Post-fire vegetation recovery at forest sites is affected by permafrost degradation in the Da Xing’an Mountains of northern China. Journal of Vegetation Science, 2019, 30: 940-949 [22] 蒋磊, 宋艳宇, 宋长春, 等. 大兴安岭冻土区泥炭地土壤碳、氮含量和酶活性室内模拟研究. 湿地科学, 2018, 16(3): 294-302 [23] Llorens L, Penuelas J, Estiarte M, et al. Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming. Annals of Botany, 2004, 94: 843-853 [24] Jing X, Wang YH, Chung H, et al. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry, 2014, 117: 39-54 [25] Docherty KM, Balser TC, Bohannan BJM, et al. Soil microbial responses to fire and interacting global change factors in a California annual grassland. Biogeochemistry, 2012, 109: 63-83 [26] Burns RG, DeForest JL, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58: 216-234 [27] 沈颖, 秦涛, 郭银花, 等. 林火对山西太岳山油松林土壤微生物-酶活性的短期影响. 北京林业大学学报, 2022, 44(4): 76-85 [28] 李晓红. 鄱阳湖湿地不同植物群落土壤养分和土壤酶活性垂直分布特征. 水土保持研究, 2019, 26(1): 69-75, 81 [29] 王梅, 晏梓然, 赵子文, 等. 黄土高原植被演替过程中相对土壤酶活性的变化特征. 水土保持学报, 2021, 35(5): 181-187 [30] 孙毅, 和润莲, 何光熊, 等. 滇西并流河谷区土壤酶活性化学计量学特征与环境因子的关系. 应用生态学报, 2021, 32(4): 1269-1278 [31] Wang JY, Song C, Wang XW, et al. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena, 2012, 96: 83-89 [32] Delijani NB, Moshki A, Matinizadeh M, et al. The effects of fire and seasonal variations on soil properties in Juniperus excelsa M. Bieb. stands in the Alborz Mountains, Iran. Journal of Forestry Research, 2022, 33: 1471-1479 [33] Zhang YM, Wu N, Zhou GY, et al. Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Applied Soil Ecology, 2005, 30: 215-225 [34] 梁晓霞. 芦芽山亚高山草甸土壤微生物群落特征及其驱动因子研究. 硕士论文. 太原: 山西大学, 2023 [35] 丁令智. 大兴安岭北部主要树种根际土壤碳氮形态及土壤酶活性研究. 硕士论文. 哈尔滨: 东北林业大学, 2019 [36] 刘巧娟, 张之松, 满秀玲, 等. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报, 2024, 52(3): 125-131 [37] 严岩, 文波龙, 徐惠风, 等. 除草剂苄嘧磺隆对盐碱化沼泽芦苇生长及土壤酶活性影响的实验研究. 湿地科学, 2016, 14(1): 117-121 [38] Taş N, Prestat E, McFarland JW, et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. The ISME Journal, 2014, 8: 1904-1919 |