欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (6): 1722-1730.doi: 10.13287/j.1001-9332.202506.005

• 研究论文 • 上一篇    下一篇

长时间序列多源遥感数据的森林干扰提取

侯卓涵1, 于颖1,2*, 杨曦光1,2   

  1. 1东北林业大学, 哈尔滨 150040;
    2森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040
  • 收稿日期:2024-12-26 接受日期:2025-02-23 出版日期:2025-06-18 发布日期:2025-12-18
  • 通讯作者: *E-mail: yuying@nefu.edu.cn
  • 作者简介:侯卓涵, 女, 2000年生, 硕士研究生。主要从事林业遥感研究。E-mail: 3102783051@qq.com
  • 基金资助:
    “十四五”国家重点研发计划课题(2023YFD2201704)和东北林业大学碳中和专项科学基金项目(HFW220100054)

Extraction of forest disturbance information from multi-source and long-term series of remote sensing data

HOU Zhuohan1, YU Ying1,2*, YANG Xiguang1,2   

  1. 1Northeast Forestry University, Harbin 150040, China;
    2Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Harbin 150040, China
  • Received:2024-12-26 Accepted:2025-02-23 Online:2025-06-18 Published:2025-12-18

摘要: 本研究针对黑龙江省2001—2023年森林生态系统干扰特征,融合多源遥感数据构建了森林干扰识别方法体系,对黑龙江整体森林干扰强度进行评估,并进行干扰提取和干扰类型识别。结果表明: 2001—2023年间,2003年森林干扰强度达到峰值, 主要源于大规模森林火灾。基于LandTrendr方法使用多种光谱指数融合的干扰检测结果与Global Forest Change数据空间的一致性在90%以上。将黑龙江的森林干扰分为3类,分别是火灾干扰、病虫害干扰和采伐干扰,干扰类型分类总体精度为87.8%(Kappa系数为0.81)。不同光谱指数对干扰类型具有差异性响应,归一化燃烧指数对火灾干扰敏感性最强,归一化植被指数对植被整体变化比较敏感,归一化差分湿度指数在病虫害识别中贡献显著,而全球干扰指数可对人为采伐活动进行辅助判别。综上,多光谱指数协同分析和时序特征融合可有效提升森林干扰类型的识别精度,为东北亚寒温带森林生态系统管理提供科学依据。

关键词: 森林干扰, 遥感监测, LandTrendr算法, 时间序列分析, 机器学习

Abstract: We developed a method of comprehensive forest disturbance identification system based on the distur-bance characteristics of forest ecosystem and the integrated multi-source remote sensing data to evaluate the overall forest disturbance intensity of Heilongjiang Province from 2001 to 2023. We further conducted disturbance extraction and types identification. The results showed that forest disturbance intensity peaked in 2003, primarily due to large-scale forest fires. The spatial consistency between disturbance detection using the LandTrendr method and the Global Forest Change dataset exceeded 90%. Forest disturbances could be categorized into three types, including fire disturbance, pest disturbance, and logging disturbance. The overall classification accuracy for disturbance types was 87.8% (Kappa coefficient=0.81). Different spectral indices had different responses to disturbance types. Specifically, the normalized burn ratio was the most sensitive to fire disturbance. The normalized difference vegetation index was more responsive to overall vegetation change. The normalized difference moisture index made a more significant contribution to the identification of pest disease, while the modified greenness difference index could assist in detecting logging activities. In conclusion, the integrative analysis of multi-spectral indices and the fusion of temporal features could effectively improve the accuracy of identifying forest disturbance types, which would provide a scientific basis for forest ecosystem management in cold temperate zone of Northeast Asia.

Key words: forest disturbance, remote sensing monitoring, LandTrendr, time series analysis, machine learning