欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (7): 2201-2212.doi: 10.13287/j.1001-9332.202507.033

• 研究论文 • 上一篇    下一篇

宁夏盐碱区排水沟不同类型岸边带氨氧化过程及其影响因子

孙西燕1, 祁若曈1, 李宏旭1, 郑兰香1,2*   

  1. 1宁夏大学生态环境学院, 银川 750021;
    2宁夏回族自治区黄河水联网数字治水重点实验室, 银川 750021
  • 收稿日期:2025-01-13 接受日期:2025-05-04 出版日期:2025-07-18 发布日期:2026-01-18
  • 通讯作者: *E-mail: zhenglx@nxu.edu.cn
  • 作者简介:孙西燕, 女, 2000年生, 硕士研究生。主要从事水环境氮循环过程研究。E-mail: sunxy0327@163.com
  • 基金资助:
    国家自然科学基金项目(42267011)、宁夏自然科学基金项目(2023AAC03113,2021AAC03176)和宁夏回族自治区重点研发计划项目(2019BFG02032)

Soil ammonia oxidation process and its driving factors in the riparian zone of drainage ditch in saline-alkali area of Ningxia, Northwest China

SUN Xiyan1, QI Ruotong1, LI Hongxu1, ZHENG Lanxiang1,2*   

  1. 1School of Ecology and Environment, Ningxia University, Yinchuan 750021, China;
    2Ningxia Hui Autonomous Region Key Laboratory of Yellow River Integrated Water Network Digital Water Management, Yinchuan 750021, China
  • Received:2025-01-13 Accepted:2025-05-04 Online:2025-07-18 Published:2026-01-18

摘要: 氨氧化过程是岸边带氮循环的重要环节。为探究宁夏银北盐碱区排水沟不同类型岸边带土壤氨氧化过程,选取宁夏第三排水沟砾石芦苇混合带、芦苇带、高盐地肤带、马蔺护坡带和裸土带5种不同类型的岸边带,测定土壤潜在硝化速率(PNR)和环境因子,并基于宏基因测序和qPCR技术分析氨氧化古菌(AOA)和氨氧化细菌(AOB)的群落结构和功能基因。结果表明: 岸边带总的潜在硝化速率(PNRtotal)为0.47~1.37 μmol N·g-1·d-1,且AOA的潜在硝化速率(PNRAOA)大于AOB的潜在硝化速率(PNRAOB);AOA amoA基因拷贝数(2.63×106~2.06×107 copies·g-1)显著高于AOB amoA(7.14×105~9.55×106 copies·g-1)。芦苇带、砾石芦苇混合带以及马蔺护坡带的PNR和amoA基因拷贝数均高于高盐地肤带和裸土带,岸边带硝化过程由AOA主导。AOA均来源于亚硝化球菌门,优势属为未分类菌属unclassified_f__NitrososphaeraceaeCandidatus Nitrosocosmicus。不同类型岸边带铵态氮、亚硝态氮、硝态氮、电导率、总有机碳和总氮等理化因子存在显著差异,PNRAOA和PNRtotal受到铵态氮、总氮、总有机碳和pH的显著影响,PNRtotal与AOA amoA基因拷贝数呈极显著正相关。结构方程模型(SEM)表明,pH和总有机碳是岸边带硝化过程的主要影响因子,AOA amoA基因拷贝数对硝化速率有显著的正向影响。

关键词: 岸边带, 潜在硝化速率, 氨氧化微生物, amoA基因, 结构方程模型(SEM)

Abstract: Ammonia oxidation plays a critical role in nitrogen cycling within riparian zones. To investigate this process in saline-alkali soils of the Yinbei region, northern Yinchuan, Ningxia, we selected five distinct riparian types along the Third Drainage Ditch: gravel-reed mixed zone, reed zone, high-salt Bassia scoparia zone, Iris lactea embankment zone and bare soil zone. We quantified soil potential nitrification rates (PNR), environmental factors, and analyzed ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities via me-tagenomics and qPCR targeting amoA genes. The results showed that the total potential nitrification rate (PNRtotal) in the riparian zones ranged from 0.47 to 1.37 μmol N·g-1·d-1, with PNRAOA (potential nitrification rate of AOA) being higher than PNRAOB (potential nitrification rate of AOB). The copy number of AOA amoA genes (2.63×106-2.06×107 copies·g-1) was significantly higher than AOB amoA genes (7.14×105-9.55×106 copies·g-1). The PNR and amoA gene copy number in the reed zone, gravel-reed mixed zone, and I. lactea embankment zone were higher than those in the high-salt B. scoparia zone and bare soil zone, indicating that nitrification in the riparian zones was dominated by AOA. AOA were affiliated with the phylum Nitrososphaerota, with the dominant genera being unclassified_f__Nitrososphaeraceae and Candidatus Nitrosocosmicus. The physicochemical factors, including ammonium, nitrite, nitrate, electrical conductivity, total organic carbon, and total nitrogen exhibited significant differences among different riparian zones. PNRAOA and PNRtotal were significantly influenced by ammonium, total nitrogen, total organic carbon and pH, and PNRtotal showed a highly significant positive correlation with amoA gene copy number. Structural equation modeling (SEM) results indicated that pH and total organic carbon were the primary factors affecting nitrification in the riparian zones and that AOA amoA gene copy number showed significant positive correlation with nitrification rate.

Key words: riparian zone, potential nitrification rate, ammonia-oxidizing microorganism, amoA gene, structural equation modeling (SEM)