[1] 孟凡乔, 王坤, 肖广敏, 等. 华北平原潮土区粮田氮淋失阻控措施及效果分析. 中国生态农业学报, 2021, 29(1): 141-153 [2] 王敬, 程谊, 蔡祖聪, 等. 长期施肥对农田土壤氮素关键转化过程的影响. 土壤学报, 2016, 53(2): 292-304 [3] 解开治, 徐培智, 蒋瑞萍, 等. 有机无机肥配施提升冷浸田土壤氮转化相关微生物丰度和水稻产量. 植物营养与肥料学报, 2016, 22(5): 1267-1277 [4] 张晶, 林先贵, 尹睿. 参与土壤氮素循环的微生物功能基因多样性研究进展. 中国生态农业学报, 2009, 17(5): 1029-1034 [5] Wang YA, Ke XB, Wu LQ, et al. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Systematic & Applied Microbiology, 2009, 32: 27-36 [6] Zhao YN, Zhang YQ, Du HX, et al. Carbon sequestration and soil microbes in purple paddy soil as affected by long-term fertilization. Toxicological & Environmental Chemistry, 2015, 97: 464-476 [7] Ouyang Y, Evans SE, Friesen ML, et al. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field stu-dies. Soil Biology and Biochemistry, 2018, 127: 71-78 [8] You LC, Ros GH, Chen YL, et al. Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition. Soil Biology and Biochemistry, 2022, 165: 108523 [9] Wang FH, Chen SM, Wang YY, et al. Long-term nitrogen fertilization elevates the activity and abundance of nitrifying and denitrifying microbial communities in an upland soil: Implications for nitrogen loss from intensive agricultural systems. Frontiers in Microbiology, 2018, 9: 2424 [10] Sun RB, Wang FH, Hu CS, et al. Metagenomics reveals taxon-specific responses of the nitrogen-cycling microbial community to long-term nitrogen fertilization. Soil Biology and Biochemistry, 2021, 156: 108214 [11] 刘妍霁, 刘子恺, 金圣圣, 等. 亚热带森林土壤氨氧化微生物和反硝化微生物功能基因丰度对氮磷输入的响应. 应用生态学报, 2023, 34(3): 639-646 [12] Liao LR, Wang J, Dijkstra FA, et al. Nitrogen enrichment stimulates rhizosphere multi-element cycling genes via mediating plant biomass and root exudates. Soil Bio-logy and Biochemistry, 2024, 190: 109306 [13] 郑玉冲, 张琳琦, 刘彬彬. 不同小麦品种根区微生物特征及对土壤氮素水平的响应. 中国生态农业学报, 2023, 31(11): 1708-1720 [14] 丁凤磊, 张乐, 余磊, 等. 不同基因型玉米品种氮积累与根区土壤氮转化过程差异研究. 云南农业大学学报, 2022, 37(6): 1004-1013 [15] 赵亚南, 徐霞, 黄玉芳, 等. 河南省小麦、玉米氮肥需求及节氮潜力. 中国农业科学, 2018, 51(14): 2747-2757 [16] Francis CA, Roberts KJ, Beman JM, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 14683-14688 [17] Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63: 4704-4712 [18] Hallin S, Lindgren PE. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Applied and Environmental Microbiology, 1999, 65: 1652-1657 [19] Guo GX, Deng H, Qiao M, et al. Effect of pyrene on denitrification activity and abundance and composition of denitrifying community in an agricultural soil. Environmental Pollution, 2011, 159: 1886-1895 [20] Kloos K, Mergel A, Rösch C, et al. Denitrification within the genus Azospirillum and other associative bacteria. Functional Plant Biology, 2001, 28: 991-998 [21] 王爽, 孙磊, 陈雪丽, 等. 不同施氮水平对玉米产量、氮素利用效率及土壤无机氮含量的影响. 生态环境学报, 2013, 22(3): 387-391 [22] Cui PY, Fan FL, Yin C, et al. Urea- and nitrapyrin-affected N2O emission is coupled mainly with ammonia oxidizing bacteria growth in microcosms of three typical Chinese arable soils. Soil Biology and Biochemistry, 2013, 66: 214-221 [23] Huang LQ, Dong HL, Wang S, et al. Diversity and abundance of ammonia-oxidizing archaea and bacteria in diverse Chinese paddy soils. Geomicrobiology Journal, 2014, 31: 12-22 [24] Ouyang Y, Norton JM, Stark JM, et al. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 2016, 96: 4-15 [25] Chen YL, Xu ZW, Hu HW, et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 2013, 68: 36-45 [26] 杨亚东, 张明才, 胡君蔚, 等. 施氮肥对华北平原土壤氨氧化细菌和古菌数量及群落结构的影响. 生态学报, 2017, 37(11): 3636-3646 [27] Zhou XG, Guan SN, Wu FZ. Composition of soil microbial communities in the rhizosphere of cucumber cultivars with differing nitrogen acquisition efficiency. Applied Soil Ecology, 2015, 95: 90-98 [28] 刘红梅, 张海芳, 秦洁, 等. 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响. 农业环境科学学报, 2019, 38(10): 2386-2394 [29] 李振高, 李良谟, 潘映华, 等. 不同基因型小麦根系分泌物对根际反硝化细菌的影响. 土壤学进展, 1994, 22(1): 50-52 [30] 王锐, 陈士勇, 陈志青, 等. 根系分泌物对根际土壤关键氮转化过程的影响. 作物杂志, 2021, 37(6): 1-8 [31] Zhang Y, Liu L, Li Q, et al. Responses of nitrification and denitrification in the rhizosphere of mudflat paddy to rice genotype and nitrogen fertilization. European Journal of Soil Biology, 2022, 113: 103452 |