欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (10): 2929-2935.doi: 10.13287/j.1001-9332.202510.012

• 生态系统碳氮生物地球化学循环过程专栏(专栏策划: 林永新、郑棉海、倪祥银) • 上一篇    下一篇

施氮量对华北平原小麦根际土壤无机氮和氮转化微生物功能基因的影响

高兵阳1, 褚旭2, 任志杰3, 汪洋1, 黄玉芳1, 叶优良1, 杨雪1, 赵亚南1*   

  1. 1河南农业大学资源与环境学院, 郑州 450046;
    2平顶山市农业农村局, 河南平顶山 467000;
    3河南省农业科学院植物营养与资源环境研究所, 郑州 450002
  • 收稿日期:2025-01-09 修回日期:2025-08-01 发布日期:2026-05-04
  • 通讯作者: *E-mail: zhaoyanan@henau.edu.cn
  • 作者简介:高兵阳, 女, 1998年生, 硕士研究生。主要从事土壤养分循环研究。E-mail: 2426865905@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1901003)、河南省高等学校重点科研项目(25A210021)和河南省科技攻关项目(232102111022)

Effects of nitrogen application rates on inorganic nitrogen and microbial nitrogen-transformation functional genes in wheat rhizosphere soil of North China Plain

GAO Bingyang1, CHU Xu2, REN Zhijie3, WANG Yang1, HUANG Yufang1, YE Youliang1, YANG Xue1, ZHAO Yanan1*   

  1. 1College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China;
    2Pingdingshan Agriculture and Rural Affairs Bureau, Pingdingshan 467000, Henan, China;
    3Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
  • Received:2025-01-09 Revised:2025-08-01 Published:2026-05-04

摘要: 探究小麦根际土壤无机氮及氮转化微生物功能基因对施氮量的响应可为小麦氮肥优化管理提供理论依据。本研究基于华北平原长期田间定位试验,采用华育198(HY198)和西农979(XN979)两个小麦品种,设置5个施氮水平:0(N0)、120(N120)、180(N180)、240(N240)、360(N360) kg·hm-2,研究施氮量对小麦根际土壤无机氮含量和硝化、反硝化微生物功能基因丰度(amoA、nirKnirSnosZ)的影响。结果表明:连续8年施氮提高了土壤铵态氮和硝态氮含量,二者均随施氮量的增加而显著增加,较N0增幅分别为54.9%~274.2%和110.3%~614.3%。同等施氮量下,西农979根际土壤功能基因amoAnirKnirS丰度显著高于华育198,而nosZ丰度显著低于华育198。硝化功能基因中,西农979和华育198根际土壤氨氧化古菌(AOA)amoA基因丰度分别在N120和N180中最低,比N0分别显著降低28.8%和46.9%;两个品种根际土壤氨氧化细菌(AOB)amoA基因丰度均随施氮量的增加而增加,华育198和西农979各施氮处理较N0的增幅分别为127.4%~362.7%和26.5%~417.9%。反硝化功能基因中,西农979根际土壤nirKnirSnosZ基因丰度在N240最高;华育198根际土壤nirK基因丰度在N360处理显著低于其余处理,而nirSnosZ基因丰度在N180处理显著低于其余处理。相关分析表明,AOB amoA基因丰度与NH4+-N、NO3--N含量呈极显著正相关,表明AOB对氮肥施用更敏感。综上,长期施用氮肥显著提高了根际土壤铵态氮和硝态氮含量,进而调控土壤硝化和反硝化微生物功能基因丰度。

关键词: 氮肥施用量, 小麦品种, 硝化功能基因, 反硝化功能基因, 无机氮

Abstract: Understanding the response of inorganic nitrogen (N) and microbial N transformation functional genes in the rhizosphere soil of wheat to N application rates can provide theoretical basis for the N optimizing in wheat production. Based on a long-term field experiment with five N application levels [0 (N0), 120 (N120), 180 (N180), 240 (N240), 360 (N360) kg·hm-2] conducted on the North China Plain with two wheat varieties, Huayu 198 (HY198) and Xinong 979 (XN979), we investigated the effects of N application rates on inorganic N content and the abundance of microbial functional genes (amoA, nirK, nirS, nosZ) related to nitrification and denitrification in rhizosphere soil. The results showed that continuous N application for eight years increased soil ammonium and nitrate content, both of which increased significantly with increasing N application rates by 54.9%-274.2% and 110.3%-614.3% respectively compared to N0. At the same N application, the microbial functional gene abundances of amoA, nirK, and nirS in rhizosphere soil of XN 979 was significantly higher than that of HY 198, while the abundance of nosZ was significantly lower for HY 198. For the nitrification functional genes, the amoA gene abundance of XN 979 was lowest at N120, decreasing by 28.8%, whereas the lowest value for HY 198 occurred at N180, decreasing by 46.9% compared to N0. The amoA gene abundance of ammonia-oxidizing bacteria (AOB) in both cultivars increased significantly with increasing N levels, showing growth rates of 127.4%-362.7% for HY198 and 26.5%-417.9% for XN 979 compare with N0. For denitrification functional genes, the nirK, nirS, and nosZ gene abundances were highest for XN 979 at N240, while in HY 198, the nirK gene abundance was significantly lower at N360 compared to other N levels, and the lowest values for nirS and nosZ occurred at N180. There was significant positive correlation between AOB amoA gene abundance and NH4+-N and NO3--N contents, indicating that AOB was more sensitive to N application. Overall, long-term N application significantly enhanced rhizosphere soil NH4+-N and NO3--N contents, which in turn regulated the abundance of microbial functional genes in nitrification and denitrification.

Key words: nitrogen fertilizer application, wheat cultivar, nitrification function genes, denitrification function genes, inorganic nitrogen