[1] 丁文娜, 星耀武. 泛青藏高原高寒植物多样性的形成与演化. 植物科学学报, 2023, 41(6): 729-740 [2] 李生梅, 杨路遥, 齐雯潇, 等. 气候和景观多样性对青藏高原草地植物多样性与生物量的影响. 生态学报, 2025, 45(7): 1-17 [3] 白振忠. 高原鼠兔对缺氧、寒冷极端高原环境适应的分子机制研究. 博士论文. 西宁: 青海大学, 2015 [4] Smith AT, Badingqiuying, Wilson MC, et al. Functional-trait ecology of the plateau pika Ochotona curzoniae (Hodgson, 1858) in the Qinghai-Tibetan Plateau ecosystem. Integrative Zoology, 2019, 14: 87-103 [5] 妥万花, 刘泽华, 张润琳, 等. 青海省黑土滩退化草地的成因及恢复治理研究进展. 青海草业, 2024, 33(4): 43-49 [6] 张卫红, 苗彦军, 赵玉红, 等. 高原鼠兔对西藏邦杰塘高寒草甸的影响. 草业学报, 2018, 27(1): 115-122 [7] Hua R, Ye GH, De Giuli M, et al. Decreased species richness along bare patch gradient in the degradation of Kobresia pasture on the Tibetan Plateau. Ecological Indicators, 2023, 157: 111195 [8] 蔡斌, 董瑞, 花蕊, 等. 基于无人机影像的鼠害地秃斑识别算法筛选. 应用生态学报, 2024, 35(7): 1951-1958 [9] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436-444 [10] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60: 84-90 [11] 冯权泷, 牛博文, 朱德海, 等. 土地利用/覆被深度学习遥感分类研究综述. 农业机械学报, 2022, 53(3): 1-17 [12] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割. 国土资源遥感, 2020, 32(4): 74-83 [13] Alsabhan W, Alotaiby T. Automatic building extraction on satellite images using Unet and ResNet50. Computational Intelligence and Neuroscience, 2022, 2022: 5008854 [14] 孙才华, 曹杨, 于红绯, 等. 基于CA-Res2-Unet的遥感图像土地利用现状信息提取研究. 辽宁石油化工大学学报, 2024, 44(3): 89-96 [15] 孙晓敏, 郑利娟, 吴军, 等. 基于U-net的“高分五号”卫星高光谱图像土地类型分类. 航天返回与遥感, 2019, 40(6): 99-106 [16] 王永财, 万华伟, 高吉喜, 等. 基于深度学习语义分割模型的草地植被盖度估算对比研究. 环境科学研究, 2024, 37(10): 2299-2309 [17] Pardede J, Sitohang B, Akbar S, et al. Implementation of transfer learning using VGG16 on fruit ripeness detection. International Journal of Intelligent Systems, 2021, 13: 52-61 [18] Hou QB, Zhou DQ, Feng JS. Coordinate attention for efficient mobile network design. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021: 13713-13722 [19] Gaci S. The use of wavelet-based denoising techniques to enhance the first-arrival picking on seismic traces. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52: 4558-4563 [20] Mukhoti J, Kulharia V, Sanyal A, et al. Calibrating deep neural networks using focal loss. Advances in Neural Information Processing Systems, 2020, 33: 15288-15299 [21] Zhao RJ, Qian BY, Zhang XL, et al. Rethinking dice loss for medical image segmentation. IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 2020: 851-860 [22] Liu FY, Wang LB. UNet-based model for crack detection integrating visual explanations. Construction and Building Materials, 2022, 322: 126265 [23] Hamamoto K, Hideshima N, Lu H, et al. DeepLabv3. Artificial Intelligence and Robotics: 8th International Symposium, Beijing, China, 2024: 181 [24] Zhu XL, Cheng ZY, Wang S, et al. Coronary angiography image segmentation based on PSPNet. Computer Methods and Programs in Biomedicine, 2021, 200: 105897 [25] Seong S, Choi J. Semantic segmentation of urban buil-dings using a high-resolution network (HRNet) with channel and spatial attention gates. Remote Sensing, 2021, 13: 3087 [26] Xie EZ, Wang WH, Yu ZD, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090 [27] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 3431-3440 [28] 国家林业和草原局. 主要草原有害生物防治指标. 北京: 国家林业和草原局, 2021 |