欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (10): 3193-3201.doi: 10.13287/j.1001-9332.202510.031

• 研究报告 • 上一篇    下一篇

基于深度学习的高寒草甸高原鼠兔危害地秃斑的分割算法

李佳珍1, 王联国1, 花立民2*, 杨洋1, 孔雅利1, 杨思维3   

  1. 1甘肃农业大学信息科学技术学院, 兰州 730070;
    2甘肃农业大学草业学院/草业生态系统教育部重点实验室/国家林业和草原局高寒草地鼠害防控工程技术研究中心, 兰州 730070;
    3四川省草原科学研究院, 成都 611731
  • 收稿日期:2025-01-13 修回日期:2025-07-17 发布日期:2026-05-04
  • 通讯作者: *E-mail: hualm@gsau.edu.cn
  • 作者简介:李佳珍, 女, 1998年生, 硕士研究生。主要从事数据科学研究。E-mail: 1553705843@qq.com
  • 基金资助:
    国家重点研发计划项目(2024YFD1400004)、甘肃省教育厅高校科研创新平台重大培育项目(2024CXPT-07)、四川省自然科学基金面上项目(2023NSFSC0207)和甘肃省重点研发计划项目(21YF5GA088)

Segmentation algorithm of Ochotona curzoniae-induced bare patches in alpine meadow based on deep lear-ning

LI Jiazhen1, WANG Lianguo1, HUA Limin2*, YANG Yang1, KONG Yali1, YANG Siwei3   

  1. 1College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
    2College of Grassland Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of the Ministry of Education/Enginee-ring and Technology Research Center for Alpine Rodent Pest Control, National Forestry and Grassland Administration, Lanzhou 730070, China;
    3Sichuan Academy of Grassland Sciences, Chengdu 611731, China
  • Received:2025-01-13 Revised:2025-07-17 Published:2026-05-04

摘要: 精准识别高原鼠兔危害地秃斑,是科学评估其危害程度的前提与基础。传统的秃斑识别与面积测算方法存在计算繁琐、效率低下等问题。本研究基于深度学习的无人机影像分割方法,提出了小波增强U型卷积神经网络(W-UNet)分割方法。该方法以U型卷积神经网络(UNet)为基础架构,采用视觉几何组16层网络(VGG16)作为主干网络。在跳跃连接部分引入坐标注意力机制(CA)提升目标区域的空间定位能力。在编码阶段引入小波变换卷积(WTConv),增强高频信息提取与细粒度特征的恢复能力。此外,采用Focal Loss与Dice Loss组合构建损失函数,有效解决类别不平衡问题。结果表明: 本研究提出的无人机影像分割方法在平均交并比(MIoU)、类别平均像素准确率(MPA)和整体准确率(ACC)方面分别达到81.2%、89.4%和95.8%,显著优于传统的UNet-Vgg模型。该研究为高原鼠兔鼠害地秃斑的高效精准监测提供了有力的技术支撑。

关键词: 鼠害地, 秃斑, 无人机, 深度学习, W-UNet

Abstract: Accurate identification of bare patches caused by Ochotona curzoniae disturbance is fundamental for scientifically assessing the damage level. Traditional methods for recognizing and calculating the area of bare patches are often computationally complex and inefficient. Here, we proposed a wavelet-enhanced U-shaped convolutional neural network (W-UNet) segmentation method based on deep learning for unmanned aerial vehicle (UAV) imagery segmentation, which was based on the U-shaped convolutional neural network (UNet) architecture and used the 16-layer Visual Geometry Group network (VGG16) as the backbone. We introduced the coordinate attention mecha-nism (CA) in the skip connection section to enhance the spatial localization of target regions, and wavelet transform convolution (WTConv) during the encoding stage to improve high-frequency information extraction and the recovery of fine-grained features. Additionally, we employed a composite loss function combining Focal Loss and Dice Loss to effectively address the class imbalance issues. The results showed that the proposed method achieved a mean intersection over union (MIoU) of 81.2%, mean pixel accuracy (MPA) of 89.4%, and overall accuracy (ACC) of 95.8%, significantly outperforming the conventional UNet-Vgg model. This study would provide a robust technical framework for the efficient and accurate monitoring of bare patches induced by O. curzoniae infestation.

Key words: pika-infested land, bare patch, unmanned aerial vehicle, deep learning, W-UNet