[1] Beyer M, Hamutoko JT, Wanke H, et al. Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models. Journal of Hydrology, 2018, 566: 122-136 [2] 雷自然, 王欣, 余新晓, 等. 庐山针阔混交林优势种水分利用来源季节变化及对降水的响应. 应用生态学报, 2024, 35(4): 886-896 [3] 王东清, 许浩, 马丽慧, 等. 宁夏干旱风沙区不同季节柠条锦鸡儿水分利用特征研究. 浙江农业科学, 2024, 65(10): 2438-2442 [4] 王志超, 许宇星, 竹万宽, 等. 雷州半岛尾巨桉人工林水分利用来源的旱雨季差异. 浙江农林大学学报, 2023, 40(3): 550-559 [5] 武文杰, 吴朝明, 朱骊, 等. 南方丘陵区典型混交林树种水分来源对降水的适应性. 南京林业大学学报: 自然科学版, 2024, 48(6): 121-128 [6] 祝维, 周欧, 孙一鸣, 等. 混交林内毛白杨和刺槐根系吸水的动态生态位划分. 植物生态学报, 2023, 47(3): 389-403 [7] Liu ZQ, Yu XX, Jia GD. Water uptake by coniferous and broad-leaved forest in a rocky mountainous area of northern China. Agricultural and Forest Meteorology, 2019, 265: 381-389 [8] 刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏利用水分来源对降水的响应. 林业科学, 2018, 54(7): 16-23 [9] 朱雅娟, 贾志清, 卢琦, 等. 乌兰布和沙漠5种灌木的水分利用策略. 林业科学, 2010, 46(4): 15-21 [10] 邢星, 陈辉, 朱建佳, 等. 柴达木盆地诺木洪地区5种优势荒漠植物水分来源. 生态学报, 2014, 34(21): 6277-6286 [11] 高彩欣, 孙从建, 陈伟, 等. 生态恢复背景下黄土高原东部地区典型植物用水策略. 地理研究, 2024, 43(8): 1958-1976 [12] Su PY, Zhang MJ, Qu DY, et al. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water, 2020, 12: 2791 [13] Nie YP, Chen HS, Wang KL, et al. Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of Southwest China. Journal of Hydrology, 2012, 420: 264-274 [14] Tateno R, Hishi T, Takeda H. Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. Forest Ecology and Management, 2004, 193: 297-306 [15] Tromp-van Meerveld H, McDonnell JJ. On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Advances in Water Resources, 2006, 29: 293-310 [16] Kume T, Tsuruta K, Komatsu H, et al. Differences in sap flux-based stand transpiration between upper and lower slope positions in a Japanese cypress plantation watershed. Ecohydrology, 2016, 9: 1105-1116 [17] Tsuruta K, Yamamoto H, Kosugi Y, et al. Slope position and water use by trees in a headwater catchment dominated by Japanese cypress: Implications for catchment-scale transpiration estimates. Ecohydrology, 2020, 13: e2245 [18] Landwehr JM, Coplen TB. Line-conditioned excess: A new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. Isotopes in Environmental Studies-Aquatic Forum, Monaco, 2006: 132-135 [19] 曾祥明, 徐宪立, 钟飞霞, 等. MixSIAR和IsoSource模型解析植物水分来源的比较研究. 生态学报, 2020, 40(16): 5611-5619 [20] Jia JB, Chen Y, Lu J, et al. Water uptake pattern by coniferous forests in two habitats linked to precipitation changes in subtropical monsoon climate region, China. Forests, 2022, 13: 708 [21] Yang J, Chen HS, Nie YP, et al. Dynamic variations in profile soil water on karst hillslopes in Southwest China. Catena, 2019, 172: 655-663 [22] Chen L, Luo Y, Tang JL, et al. Determination of optimum solum thickness of sloping cropland for maize plantation in an Entisol based on water use strategy and plant traits. Agricultural Water Management, 2024, 299: 108867 [23] Patton NR, Lohse KA, Godsey SE, et al. Predicting soil thickness on soil mantled hillslopes. Nature Communications, 2018, 9: 3329 [24] Schreiner-Mcgraw AP, Baffaut C. Quantifying links between topsoil depth, plant water use, and yield in a rainfed maize field in the U. S. Midwest. Agricultural Water Management, 2023, 290: 108569 [25] 杜阿朋, 于澎涛, 王彦辉, 等. 六盘山北侧叠叠沟小流域土壤物理性质空间变异的研究. 林业科学研究, 2006, 19(5): 547-554 [26] 张川, 陈洪松, 张伟, 等. 喀斯特坡面表层土壤含水量、容重和饱和导水率的空间变异特征. 应用生态学报, 2014, 25(6): 1585-1591 [27] 张继光, 陈洪松, 苏以荣, 等. 喀斯特峰丛洼地坡面土壤水分空间变异研究. 农业工程学报, 2006, 22(8): 54-58 [28] Deng WP, Jia GD, Liu YQ, et al. Long-term study on the seasonal water uptake of Platycladus orientalis in the Beijing mountain area, northern China. Agricultural and Forest Meteorology, 2021, 307: 108531 [29] 邹巧云, 陈洪松, 马星宇, 等. 基于控水试验的喀斯特出露基岩生境植物水分来源分析. 应用生态学报, 2019, 30(3): 759-767 [30] 聂云鹏, 陈洪松, 王克林. 石灰岩地区连片出露石丛生境植物水分来源的季节性差异. 植物生态学报, 2011, 35(10): 1029-1037 [31] Zhou JX, Wang YQ, Li RJ, et al. Response of deep soil water deficit to afforestation, soil depth, and precipitation gradient. Agricultural and Forest Meteorology, 2024, 352: 110024 [32] 王欣, 贾国栋, 邓文平, 等. 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 2021, 32(6): 1943-1950 [33] 刘自强, 余新晓, 贾国栋, 等. 北京土石山区典型植物水分来源. 应用生态学报, 2017, 28(7): 2135-2142 [34] 郭钰, 姚佳峰, 董媛, 等. 油松和刺槐纯林及混交林根系分布特征. 应用生态学报, 2023, 34(11): 2881-2888 [35] 刘梦玲, 朱启良, 李佳梅, 等. 基于细根解剖特征的树种耐旱性解析. 中国水土保持科学, 2018, 16(3): 26-33 [36] 孙守家, 孟平, 张劲松, 等. 太行山南麓山区栓皮栎-扁担杆生态系统水分利用策略. 生态学报, 2014, 34(21): 6317-6325 [37] 王绍飞, 赵西宁, 高晓东, 等. 黄土丘陵区盛果期苹果树土壤水分利用策略. 林业科学, 2018, 54(10): 31-38 [38] 赵影, 王力. 稳定同位素方法评估“两个水世界”假设的研究现状与展望. 应用生态学报, 2020, 31(4): 1417-1424 [39] 周红娟, 刘子赫, 刘柯言, 等. 不同降雨条件下北京土石山区混生乔灌植物的水分吸收和生态位特征. 植物生态学报, 2024, 48(9): 1089-1103 [40] 王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响. 植物生态学报, 2013, 37(3): 248-255 |