欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (12): 3787-3798.doi: 10.13287/j.1001-9332.202512.033

• 研究论文 • 上一篇    下一篇

退养还湖对湖泊CO2吸收的促进作用及其驱动因素

贾磊1, 张弥1,2*, 肖薇1,2,3, 蒲旖旎4, 石婕1, 葛培1, 乔珩1, 罗世纪1, 张神宝1   

  1. 1南京信息工程大学生态与应用气象学院, 南京 210044;
    2南京信息工程大学中国气象局生态系统碳源汇重点开放实验室, 南京 210044;
    3南京信息工程大学气候系统预测与变化应对全国重点实验室大气环境中心, 南京 210044;
    4成都理工大学发展规划与学科建设处, 成都 610059
  • 收稿日期:2025-06-05 修回日期:2025-09-11 出版日期:2025-12-18 发布日期:2026-07-18
  • 通讯作者: *E-mail: zhangm.80@nuist.edu.cn
  • 作者简介:贾磊, 男, 1993年生, 博士研究生。主要从事陆地碳水循环与气候变化研究。E-mail: 1441570494@qq.com
  • 基金资助:
    江苏省杰出青年基金项目(BK20220055)、江苏省“333人才”领军型人才团队项目(BRA2022023)和国家自然科学基金项目(42021004, U24A20590)

Enhancement of lake CO2 uptake by pen removal and ecological restoration and its driving factors

JIA Lei1, ZHANG Mi1,2*, XIAO Wei1,2,3, PU Yini4, SHI Jie1, GE Pei1, QIAO Heng1, LUO Shiji1, ZHANG Shenbao1   

  1. 1School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    3Yale-NUIST Center on Atmospheric Environment, State Key Laboratory of Climate System Prediction and Risk Management, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    4Office of Development Planning and Discipline Construction, Chengdu University of Technology, Chengdu 610059, China
  • Received:2025-06-05 Revised:2025-09-11 Online:2025-12-18 Published:2026-07-18

摘要: 湖泊在全球碳循环中发挥着关键作用,但水产养殖以及“退养还湖”生态恢复措施对湖泊碳源汇特征的影响尚不明确。本研究基于涡度相关法,对东太湖水产养殖区在2018年养殖阶段和2019—2020年生态恢复阶段的CO2通量进行连续观测,以明确退养还湖对湖泊CO2通量的影响及其驱动因素。结果表明: 无论在养殖阶段还是生态恢复阶段,该湖区CO2通量的季节变化均表现出生长季(5—10月)吸收CO2,非生长季(12月—次年3月)CO2通量接近于零的特征。在生长季,CO2通量还存在日间吸收、夜间排放的日变化动态,并且退养还湖后日间CO2吸收通量显著增加,而夜间CO2排放通量小幅增强。退养还湖后,外源有机碳输入减少,水生植物群落由沉水植物向浮叶植物转变,这显著提升了东太湖的CO2吸收能力,生长季CO2吸收量从2018年水产养殖阶段的182.03 g CO2·m-2提高至生态恢复阶段2019和2020年的384.17和629.19 g CO2·m-2。湖泊CO2通量日变化动态受太阳辐射控制,并且退养还湖后水生植物光能利用效率和光合作用能力均提高。在日尺度上,养殖阶段湖泊CO2通量受温度、太阳辐射和风速调控,退养还湖后风速对CO2通量变化的影响不再显著,日间CO2吸收对温度变化的敏感性Q10由2018年的2.44增加至2019年的3.16和2020年的3.03;而夜间CO2排放对温度变化的敏感性Q10则由2018年的10.20降低至2019年的1.17和2020年的5.14。在月尺度上,养殖阶段,总氮浓度是湖泊CO2通量的主控因子,归一化植被指数(NDVI)是湖泊日间CO2通量的主控因子;退养还湖后,太阳辐射、温度成为湖泊CO2通量的主控因子,并且湖泊日间CO2通量对NDVI变化响应的敏感性增加。

关键词: 亚热带湖泊, 水产养殖, 退养还湖, CO2通量, 驱动因素

Abstract: Lakes are crucial for the global carbon cycle. The impacts of aquaculture and “pen removal and lake ecological restoration” on lake carbon source and sink functions remain unclear. We continuously monitored CO2 fluxes in the aquaculture zones of East Lake Taihu during the aquaculture period (2018) and the ecological restoration period (2019-2020), to assess the effects of restoration on lake CO2 flux and its driving factors. The results showed that, regardless of the aquaculture or restoration stage, seasonal variations of CO2 fluxes followed a consistent pattern: net CO2 uptake during the growing season (May-October) and near-zero fluxes during the non-growing season (December-March). Diurnal CO2 flux patterns characterized by daytime uptake and nighttime release, which became more pronounced after restoration, with a significant increase in daytime uptake and a slight rise in nighttime emission. The reduction in external organic carbon input and the shift in dominant macrophyte communities from submerged plants to floating-leaf plants after restoration substantially enhanced net CO2 uptake of East Lake Taihu, with growing-season CO2 uptake increasing from 182.03 g CO2·m-2·a -1 in 2018 (aquaculture stage) to 384.17 and 629.19 g CO2·m-2·a -1 in 2019 and 2020, respectively. The diurnal CO2 flux dynamics were primarily driven by solar radiation. Both light-use efficiency and photosynthetic capacity of aquatic plants improved after restoration. At the daily scale, CO2 fluxes during the aquaculture period were regulated by temperature, solar radiation, and wind speed. After restoration, the effect of wind speed became insignificant, the temperature sensitivity (Q10) of daytime uptake increased from 2.44 in 2018 to 3.16 in 2019 and 3.03 in 2020; and the Q10 of nighttime emission declined from 10.20 in 2018 to 1.17 in 2019 and 5.14 in 2020. On the monthly scale, during the aquaculture phase, total nitrogen concentration was the primary controlling factor for lake CO2 flux, while the normalized difference vegetation index (NDVI) was the primary controlling factor for diurnal lake CO2 flux. After the cessation of aquaculture and the restoration of the lake, solar radiation and temperature became the primary controlling factors for lake CO2 flux, and the sensitivity of diurnal lake CO2 flux to changes in NDVI increased.

Key words: subtropical lake, aquaculture, pen removal and ecological restoration, CO2 flux, driving factor