[1] 于贵瑞, 张雷明, 张扬建, 等. 大尺度陆地生态系统状态变化及其资源环境效应的立体化协同联网观测. 应用生态学报, 2021, 32(6): 2267-2274 [Yu G-R, Zhang L-M, Zhang Y-J, et al. A coordinated three-dimensional network for observing large scale terrestrial ecosystem status changes and their resources and environment effects. Chinese Journal of Applied Ecology, 2021, 32(6): 2267-2274] [2] Haxeltine A, Prentice IC, Creswell DI. A coupled carbon and water flux model to predict vegetation structure. Journal of Vegetation Science, 1996, 7: 651-666 [3] Woodward FI, Smith TM, Emanuel WR. A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 1995, 9: 471-490 [4] Neilson RP. A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications, 1995, 5: 362-385 [5] Sellers PJ, Los SO, Tucker CJ, et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. Part II. The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate, 1996, 9: 706-737 [6] Dickinson RE, Henderson-Sellers A, Kennedy PJ, et al. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. Boulder, CO, USA: National Center for Atmospheric Research, 1986 [7] Ji J. A climate-vegetation interaction model-simulating the physical and biological processes at the surface. Journal of Biogeography, 1995, 22: 445-451 [8] Running SW, Gower ST. FOREST-BGC, a general mo-del of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Physiology, 1991, 9: 147-160 [9] Parton WJ, Stewart JWB, Cole CV. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry, 1988, 5: 109-131 [10] McGuire AD, Melillo JM, Joyce LA, et al. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochemical Cycles, 1992, 6: 101-124 [11] Cao MK, Woodward FI. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249-252 [12] Foley JA, Prentice IC, Ramankutty N, et al. An integrated biosphere model of land surface process, terres-trial carbon balance and vegetation dynamics. Global Biogeochemical Cycles, 1996, 10: 603-628 [13] Sitch S, Smith B, Prentice CI, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9: 161-185 [14] Nelson E, Mendoza G, Regetz J, et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 2009, 7: 4-11 [15] Wackernagel M, Rees W. Our Ecological Footprint: Reducing Human Impact on the Earth. Filadelfia, PA, USA: New Society Press, 1996 [16] Odum HT. Environment Accounting: Emergy and Environmental Decision Making. New York: John Wiley & Sons, 1996. [17] Costanza R, dArge R, deGroot R, et al. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387: 253-260 [18] Bonan GB, Doney SC. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 2018, 359: 533 [19] Rapport DJ, Friend AM. Towards a Comprehensive Framework for Environmental Statistics: A Stress-Response Approach. Ottawa, Canada: Statistics Canada, 1979 [20] Donnelly A, Jones M, O’Mahony T, et al. Selecting environmental indicator for use in strategic environmental assessment. Environmental Impact Assessment, 2007, 27: 161-175 [21] Manne A, Mendelsohn R, Richels R. A model for eva-luating regional and global effects of GHG reduction policies. Energy Policy, 1995, 23: 17-34 [22] Rotmans J, Deboois H, Swart RJ. An integrated model for the assessment of the greenhouse-effect: The Dutch approach. Climatic Change, 1990, 16: 331-356 [23] Wise M, Calvin K, Kyle P, et al. Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon. Climate Change Economics, 2014, 5: 1450003 [24] 马历, 龙花楼. 中国乡村地域系统可持续发展模拟仿真研究. 经济地理, 2020, 40(11): 1-9 [Ma L, Long H-L. Simulation on sustainable development of rural territorial system in China. Economic Geography, 2020, 40(11): 1-9] [25] Qu W, Barney GO, Symalla D, et al. The threshold 21: National sustainable development model// Onishi A. Integrated Global Models of Sustainable Development. Vol. Ⅱ. Oxford, UK: Encyclopedia of Life Support Systems Publishers, 1995 [26] 黄振中, 王艳, 李思一, 等.中国可持续发展系统动力学仿真模型. 计算机仿真, 1997, 14(4): 3-7 [Huang Z-Z, Wang Y, Li S-Y, et al. A system dyna-mics simulation model for the sustainable development of China. Computer Simulation, 1997, 14(4): 3-7] [27] Long MC, Lindsay K, Peacock S, et al. Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). Journal of Climate, 2013, 26: 6775-6800 [28] Arora VK, Scinocca JF, Boer GJ, et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters, 2011, 38: L05805 [29] Dufresne JL, Foujols MA, Denvil S, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, 2013, 40: 2123-2165 [30] Watanabe S, Hajima T, Sudo K, et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 2011, 4: 845-872 [31] Collins WJ, Bellouin N, Doutriaux-Boucher M, et al. Development and evaluation of an Earth-system model-HadGEM2. Geoscientific Model Development, 2011, 4: 1051-1075 [32] 王斌, 周天军, 俞永强. 地球系统模式发展展望. 气象学报, 2008, 66(6): 857-869 [Wang B, Zhou T-J, Yu Y-Q, et al. A perspective on earth system model development. Acta Meteorologica Sinica, 2008, 66(6): 857-869] [33] Center for Earth Information Science and Technology. Annual Report of the Earth Simulator. Tokyo, Japan: Japan Agency for Marine-Earth Science and Technology, 2019 [34] 于贵瑞. 人类活动与生态系统变化的前沿科学问题. 北京: 高等教育出版社, 2009: 1-28 [Yu G-R. Scientific Frontier on Human Activities and Ecosystem Changes. Beijing: Higher Education Press, 2009: 1-28] [35] 于贵瑞. 生态系统生态学// 于振良, 葛剑平, 于贵瑞, 等. 生态学的现状与发展趋势. 北京: 高等教育出版社, 2016: 298-314 [Yu G-R. Ecosystem ecology// Yu Z-L, Ge J-P, Yu G-R, eds. Ecology: Current Knowledge and Future Challenges. Beijing: Higher Education Press, 2016: 298-314] [36] 于贵瑞, 陈智, 杨萌, 王秋凤. 大尺度陆地生态系统科学研究的理论基础及其技术体系之探讨. 应用生态学报, 2021, 32(2) : 377-391 [Yu G-R, Chen Z, Yang M, et al. Discussion on the theoretical basis and technical system of large-scale terrestrial ecosystem science research. Chinese Journal of Applied Ecology, 2021, 32(2): 377-391] [37] Arora VK, Boer GJ, Friedlingstein P, et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth System Models. Journal of Climate, 2013, 26: 5289-5314 [38] Friedlingstein P, Meinshausen M, Arora VK, et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. Journal of Climate, 2014, 27: 511-526 [39] Fisher JB, Huntzinger DN, Schwalm CR, et al. Mode-ling the terrestrial biosphere. Annual Review of Environment and Resources, 2014, 39: 91-123 [40] 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用. 植物生态学报, 2020, 44(4): 436-448 [Peng S-S, Yue C, Chang J-F. Developments and applications of terrestrial biosphere model. Chinese Journal of Plant Ecology, 2020, 44(4): 436-448] [41] Lewis JM, Lakshmivarahan S, Dhall S. Dynamic Data Assimilation: A Least Squares Approach. Cambridge, UK: Cambridge University Press, 2006 [42] Luo YQ, Ogle K, Tucker C, et al. Ecological forecasting and data assimilation in a data-rich era. Ecological Applications, 2011, 21: 1429-1442 [43] Keenan TF, Davidson E, Moffat AM, et al. Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Global Change Biology, 2012, 18: 2555-2569 [44] Reed SC, Yang XJ, Thornton PE. Incorporating phosphorus cycling into global modeling efforts: A worthwhile, tractable endeavor. New Phytologist, 2015, 208: 324-329 [45] Wieder WR, Allison SD, Davidson EA, et al. Explicitly representing soil microbial processes in Earth system models: Soil microbes in Earth system models. Global Biogeochemical Cycles, 2015, 29: 1782-1800 [46] Yue C, Ciais P, Luyssaert S, et al. Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2. Geoscientific Model Development, 2018, 11: 409-428 [47] Calvin K, Bond-Lamberty B. Integrated human-earth system modeling-state of the science and future directions. Environmental Research Letters, 2018, 13: 063006 [48] 董文杰, 袁文平, 滕飞, 等. 地球系统模式与综合评估模型的双向耦合及应用. 地球科学进展, 2016, 31(12) : 1215-1219 [Dong W-J, Yuan W-P, Teng F, et al. Coupling Earth System Model and integrated assessment model. Advances in Earth Science, 2016, 31(12): 1215-1219] [49] Thornton PE, Calvin K, Jones AD, et al. Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nature Climate Change, 2017, 7: 496-500 [50] Jorgensen SE. Ecosystem theory, ecological buffer capacity, uncertainty and complexity. Ecological Modelling, 1990, 52: 125-133 [51] Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science. Nature, 2019, 566: 195-204 |