[1] Biging GS, Dobbertin M. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. Forest Science, 1992, 38: 695-720 [2] Gill SJ, Biging GS. Autoregressive moving average models of crown profiles. Ecological Modelling, 2002, 152: 213-226 [3] 罗天泽. 基于抚育间伐效应的红松人工林枝条属性模型研究. 硕士论文. 哈尔滨: 东北林业大学, 2021 [4] Dong LB, Liu ZG, Pete B. Nonlinear mixed-effects branch diameter and length models for natural Dahurian larch (Larix gmelini) forest in northeast China. Trees, 2016, 30: 1191-1206 [5] Gao HL, Liu QF, Song Y, et al. Modeling primary branch diameter and length for planted Pinus koraiensis by incorporating neighbor competition in northeast China. Forests, 2022, 13: 912 [6] Gao LS, Zhao XH, Wang XM. Effects of tree age on climate signal-evidence from young and old trees in a temperature forest. Energy Procedia, 2011, 11: 2580-2586 [7] David AJ, Boura A, Lata JC, et al. Street trees in Paris are sensitive to spring and autumn precipitation and recent climate changes. Urban Ecosystems, 2018, 21: 133-145 [8] Toledo M, Poorter L, Pena-Claros M, et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 2011, 99: 254-264 [9] Andreu L, Gutierrez E, Macias M, et al. Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology, 2007, 13: 804-815 [10] Lindner M, Michael M, Sigrid N, et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 2010, 259: 698-709 [11] Hashimoto R. Canopy development in young sugi stands in relation to changes with age in crown morphology and structure. Tree Physiology, 1991, 8: 129-143 [12] Guo HT, Jia WW, Li DD, et al. Modelling branch growth of Korean pine plantations based on stand conditions and climatic factors. Forest Ecology and Management, 2023, DOI: 10.1016/j.foreco.121318 [13] Wang TL, Wang GY, Innes JL, et al. Climate AP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Frontiers of Agricultural Science and Engineering, 2017, 4: 448-458 [14] 唐守正, 李海奎, 郎奎建. 统计和生物数学模型计算(Forstat教程). 北京: 科学出版社, 2009: 301-302 [15] 高慧淋. 东北林区针叶树树冠轮廓及特征因子模拟. 博士论文. 哈尔滨: 东北林业大学, 2017 [16] 姜立春, 李凤日, 张锐. 基于线性混合模型的落叶松枝条基径模型. 林业科学研究, 2012, 25(4): 464-469 [17] 靳晓娟, 孙玉军, 潘磊. 基于混合效应的长白落叶松一级枝条基径预估模型. 北京林业大学学报, 2020, 42(10): 1-10 [18] Huff S, Poudel KP, Ritchie M, et al. Quantifying aboveground biomass for common shrubs in northeastern California using nonlinear mixed effect models. Forest Ecology and Management, 2018, 424: 154-163 [19] 齐战涛, 朱光玉, 许冰冰, 等. 含气候效应的湖南杉木人工林断面积生长模型. 中南林业科技大学学报, 2021, 41(5): 66-73 [20] 盖军鹏, 陈东升, 贾炜玮, 等. 基于种源和气候效应的日本落叶松树高生长模型研究. 南京林业大学学报: 自然科学版, 2023, 47(4): 51-60 [21] 白耀玉, 韩宜洁, 王坷坷, 等. 秦岭山地针叶树种树木生长对气候变化的响应. 应用生态学报, 2021, 32(10): 3715-3723 [22] Carrer M, Urbinati C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology, 2004, 85: 730-740 [23] 赵晓娟, 魏江生, 吕静, 等. 大兴安岭南段山杨不同龄组径向生长对极端干旱的响应. 温带林业研究, 2020(4): 12-18 [24] Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. BioScience, 1997, 47: 235-242 [25] England JR, Attiwill PM. Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees, 2006, 20: 79-90 [26] 董灵波, 郭新月, 蔺雪莹, 等. 气候变化对不同等级长白落叶松人工林单木生产力的影响. 东北林业大学学报, 2023, 51(5): 1-7 [27] Wang TL, Andreas H, David LS, et al. ClimateWNA: High-resolution spatial climate data for western North America. Journal of Applied Meteorology and Climatology, 2012, 51: 16-29 [28] 刘兆刚, 李凤日. 樟子松人工林树冠结构模型及三维图形可视化模拟. 林业科学, 2009(6): 54-61 [29] 申家朋. 日本落叶松人工林生物量及其对气候变化的响应. 博士论文. 北京: 中国林业科学研究院, 2019 [30] Yang W, Wang Y, Webb AA, et al. Influence of climatic and geographic factors on the spatial distribution of Qinghai spruce forests in the dryland Qilian Mountains of Northwest China. Science of the Total Environment, 2018, 612: 1007-1017 |