[1] Rodhe H. A comparison of the contribution of various gases to the greenhouse effect. Science, 1990, 248: 1217-1219 [2] Katrin K, Antje B. Anaerobic oxidation of methane: Progress with an unknown process. Annual Review of Microbiology, 2009, 63: 311-334 [3] Davidson EA, Nepstad DC, Ishida FY, et al. Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 2008, 14: 2582-2590 [4] Christiansen JR, Levy BD, Prescott CE, et al. Microbial and environmental controls of methane fluxes along a soil moisture gradient in a pacific coastal temperate rainforest. Ecosystems, 2016, 19: 1255-1270 [5] Wang WQ, Sardans J, Wang C, et al. Relationships between the potential production of the greenhouse gases CO2, CH4 and N2O and soil concentrations of C, N and P across 26 paddy fields in southeastern China Atmospheric Environment, 2017, 164: 458-467 [6] 程淑兰, 方华军, 于贵瑞, 等. 森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展. 生态学报, 2012, 32(15): 4914-4923 [7] Stefano B, Volker B, Nolwenn C, et al. Methane fluxes from coastal sediments are enhanced by macrofauna. Scientific Reports, 2017, 7: 13145 [8] Filser J, Faber JH, Tiunov AV, et al. Soil fauna: Key to new carbon models. Soil, 2016, 2: 565-582 [9] Veronika J, Tomáš P, Martina , et al. Methane and carbon dioxide flux in the profile of wood ant (Formica aquilonia) nests and the surrounding forest floor during a laboratory incubation. FEMS Microbiology Ecology, 2016, 92: 141-143 [10] Huang XH, Yuan H, Yu FK, et al. Spatial-temporal succession of the vegetation in Xishuangbanna, China during 1976-2010: A case study based on RS technology and implications for eco-restoration. Ecological Engineering, 2014, 70: 255-262 [11] Jílková V, Cajthaml T, Frouz J. Respiration in wood ant (Formica aquilonia) nests as affected by altitudinal and seasonal changes in temperature Soil Biology and Biochemistry, 2015, 86: 50-57 [12] 周伟, 吴红慧, 张运龙, 等. 土壤活性有机碳测定方法的改良. 土壤通报, 2019, 50(1): 70-75 [13] 李世清, 李生秀. 土壤微生物体氮测定方法的研究. 植物营养与肥料学报, 2000, 6(1): 75-83 [14] Davidson EA, Françoise YI, Nepstad DC. Effects of an experimental drought on soil emissions of carbon dio-xide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 2004, 10: 718-730 [15] 贾朋, 高常军, 李吉跃, 等. 华南地区尾巨桉和马占相思人工林地表温室气体通量. 生态学报, 2018, 38(19): 6903-6911 [16] 魏华. 温带落叶阔叶林和热带山地雨林土壤温室气体排放规律及其影响因子. 博士论文. 杨凌: 西北农林科技大学, 2018 [17] 卢昌义, 叶勇, 黄玉山, 等. 海南岛东寨港红树林群落甲烷通量研究. 植物生态学报, 2000, 24(1): 87-90 [18] Bhattacharyya P, Roy KS, Neogi S, et al. Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.). Science of the Total Environment, 2013, 461-462: 601-611 [19] 邓湘雯, 杨晶晶, 陈槐, 等. 森林土壤氧化(吸收)甲烷研究进展. 生态环境学报, 21(3): 577-583 [20] Kevin RT. Soil methane oxidation and land-use change from process to mitigation. Soil Biology and Biochemistry, 2015, 80: 260-272 [21] Mer JL, Roger P. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 2001, 37: 25-50 [22] 李霁航, 王邵军, 王红, 等. 蚂蚁筑巢对高檐蒲桃热带森林群落土壤呼吸的影响. 生态学报, 2018, 38(17): 6033-6042 [23] Härkönen SK, Sorvari J. Effect of host species, host nest density and nest size on the occurrence of the shining guest ant Formicoxenus nitidulus (Hymenoptera: Formicidae). Journal of Insect Conservation, 2017, 21: 477-485 [24] Wolf K, Flessa H, Veldkamp E. Atmospheric methane uptake by tropical montane forest soils and the contribution of organic layers. Biogeochemistry, 2012, 111: 469-483 [25] 彭兴意, 秦宇, 舒钰清, 等. 三峡库区夏季万州段底泥甲烷功能菌群落对甲烷排放的影响. 环境工程学报, 2022, 16(3): 1028-1038 [26] Blankinship JC, Brown JR, Dijkstra P, et al. Response of terrestrial CH4 uptake to interactive changes in precipitation and temperature along a climatic gradient. Ecosystems, 2010, 13, 1157-1170. [27] 杨析, 邵明安, 李同川, 等. 黄土高原北部日本弓背蚁巢穴结构特征及其影响因素 土壤学报, 2018, 55(4): 868-878 [28] 李少辉, 王邵军, 张哲, 等. 蚂蚁筑巢对西双版纳热带森林土壤易氧化有机碳时空动态的影响. 应用生态学报, 2019, 30(2): 413-419 [29] 翟俊, 马宏璞, 陈忠礼, 等. 湿地甲烷厌氧氧化的重要性和机制综述. 中国环境科学, 2017, 37(9): 3506-3514 [30] Zhang W, Mo JM, Zhou GY, et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China. Journal of Geophysical Research: Atmospheres. 2008, 113, DOI: 10.1029/2007JD009195 [31] Xu JB, Jia ZJ, Lin XG, et al. DNA-based stable isotope probing identifies formate-metabolizing methanogenic archaea in paddy soil. Microbiological Research, 2017, 202: 36-42 [32] Froz J, Kalčík J, Cudlín P. Accumulation of phosphorus in nests of red wood ants Formica s. str. Annales Zoologici Fennici, 2005, 42: 269-275 [33] Li DM, Liu MQ, Cheng YH, et al. Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil & Tillage Research, 2011, 113: 77-81 [34] Bergman I, Klarqvist M, Nilsson M. Seasonal variation in rates of methane production from peat of various botanical origins: Effects of temperature and substrate quality. FEMS Microbiology Ecology, 2000 33: 181-189 [35] 丁维新, 蔡祖聪. 土壤有机质和外源有机物对甲烷产生的影响. 生态学报, 2002, 22(10): 1672-1679 [36] Aronson EL, Helliker BR. Methane flux in non-wetland soils in response to nitrogen addition: A meta-analysis. Ecology, 2010, 91: 3242-3251 [37] Novikov VV, Stepanov AL. Coupling of microbial processes of methane and ammonium oxidation in soils. Microbiology, 2002, 71: 234-237 [38] Auman AJ, Speake CC, Lidstrom ME. nifH sequences and nitrogen fixation in type I and type II methanotrophs. Applied and Environmental Microbiology, 2001, 67: 4009-4016 [39] 王汝南. 模拟大气氮沉降对温带森林土壤温室气体交换通量的影响. 硕士论文. 北京: 北京林业大学, 2012 [40] Wang S, Li J, Zhang Z, et al. The contributions of underground-nesting ants to CO2 emission from tropical forest soils vary with species. Science of the Total Environment, 2018, 630: 1095-1102 [41] Folgarait PJ, Perelman S, Gorosito N, et al. Effects of Camponotus punctulatus ants on plant community composition and soil properties across land-use histories. Plant Ecology, 2002, 163: 1-13 [42] Berberich GM, Ellison AM, Berberich MB, et al. Can a red wood-ant nest be associated with fault-related CH4 micro-seepage? A case study from continuous short-term in-situ sampling. Animals, 2018, 8: 46 [43] 张雪慧, 张仲胜, 武海涛. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展. 应用生态学报, 2020, 31(12): 4301-4311 [44] 解玲玲, 王邵军, 肖博, 等. 蚂蚁巢穴对高檐蒲桃热带次生林土壤CH4排放通量的影响. 应用生态学报, 2024, 35(3): 678-686 [45] 杨有芳, 字洪标, 刘敏, 等. 高寒草甸土壤微生物群落功能多样性对广布弓背蚁蚁丘扰动的响应. 草业学报, 2017, 26(1): 43-53 |