[1] 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康. 中国科学:生命科学, 2021, 51(1): 1-11 [2] Yang Y, Li T, Wang Y, et al. Negative effects of multiple global change factors on soil microbial diversity. Soil Biology and Biochemistry, 2021, 156: 108229 [3] Jiao S, Qi J, Jin C, et al. Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Global Change Biology, 2022, 28: 6653-6664 [4] Zhang X, Liu S, Wang J, et al. Local community assembly mechanisms shape soil bacterial β diversity patterns along a latitudinal gradient. Nature Communications, 2020, 11: 5428 [5] Liu L, Chen H, Tian J. Varied response of carbon dioxide emissions to warming in oxic, anoxic and transitional soil layers in a drained peatland. Communications Earth & Environment, 2022, 3: 313 [6] 王好才, 夏敏, 刘圣恩, 等. 若尔盖高原泥炭沼泽湿地土壤细菌群落空间分布及其驱动机制. 生态学报, 2021, 41(7): 2663-2675 [7] Xue R, Zhao K, Yu X, et al. Deciphering sample size effect on microbial biogeographic patterns and community assembly processes at centimeter scale. Soil Biology and Biochemistry, 2021, 156: 108218 [8] Chu H, Sun H, Tripathi BM, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environmental Microbiology, 2016, 18: 1523-1533 [9] Tao F, Huang Y, Hungate BA, et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature, 2023, 618: 981-985 [10] Liu ZD, Song YY, Ma XY, et al. Deep soil microbial carbon metabolic function is important but often neglected: A study on the Songnen Plain reed wetland, Northeast China. Fundamental Research, 2023, 3: 833-843 [11] 刘超. 我国东北不同类型冻土区泥炭地土壤酶及微生物分布特征. 硕士论文. 哈尔滨. 哈尔滨师范大学, 2020 [12] Yang L, Jiang M, Zou Y, et al. Geographical distribution of iron redox cycling bacterial community in peatlands: Distinct assemble mechanism across environmental gradient. Frontiers in Microbiology, 2021, 12: 674411 [13] Wang HC, Qi JF, Xiao DR, et al. Bacterial community diversity and underlying assembly patterns along vertical soil profiles in wetland and meadow habitats on the Zoige Plateau, China. Soil Biology and Biochemistry, 2023, 184: 109076 [14] Luo L, Ye H, Zhang D, et al. The dynamics of phosphorus fractions and the factors driving phosphorus cycle in Zoige Plateau peatland soil. Chemosphere, 2021, 278: 130501 [15] Dai T, Zhang Y, Tang Y, et al. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: A case study of microbial communities in the sediments of Hangzhou Bay. FEMS Microbiology Ecology, 2016, 92: fiw150 [16] 朱耀军, 马牧源, 赵娜娜. 若尔盖高寒泥炭地修复技术进展与展望. 生态学杂志, 2020, 39(12): 4185-4192 [17] 罗明没, 陈悦, 杨刚, 等. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应. 植物生态学报, 2021, 45(5): 552-561 [18] Rodrigues JLM, Pellizari VH, Mueller R, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 988-993 [19] Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 4516-4522 [20] Toju H, Tanabe AS, Yamamoto S, et al. High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS One, 2012, 7(7): e40863 [21] Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37: 852-857 [22] Callahan BJ, Mcmurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 2016, 13: 581-583 [23] Pelin Y, Wegener PL, Pablo Y, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 2013, 42: D643-D648 [24] Chen W, Ren K, Isabwe A, et al. Stochastic processes shape microeukaryotic community assembly in a subtro-pical river across wet and dry seasons. Microbiome, 2019, 7: 138 [25] Wang X, Lu X, Yao J, et al. Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. The ISME Journal, 2017, 11: 1345-1358 [26] Martiny JBH, Eisen JA, Penn K, et al. Drivers of bacterial beta-diversity depend on spatial scale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 7850-7854 [27] Wang X, Fang L, Beiyuan J, et al. Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environmental Pollution, 2021, 277: 116758 [28] Li M, Zhang K, Yan Z, et al. Soil water content shapes microbial community along gradients of wetland degradation on the Tibetan Plateau. Frontiers in Microbiology, 2022, 13: 824267 [29] 褚海燕, 王艳芬, 时玉, 等. 土壤微生物生物地理学研究现状与发展态势. 中国科学院院刊, 2017, 32(6): 585-592 [30] Duan Y, Wang X, Wang L, et al. Biogeographic patterns of soil microbe communities in the deserts of the Hexi Corridor, northern China. Catena, 2022, 211: 106026 [31] 费媛媛, 焦硕, 陆雅海. 中国东部水稻土壤丁酸互营降解微生物的地理分布格局. 北京大学学报: 自然科学版, 2021, 57(1): 143-152 [32] Tan W, Wang J, Bai W, et al. Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems. Scientific Reports, 2020, 10: 6012 [33] Philippot L, Chenu C, Kappler A, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2023, 22: 1-14 [34] Wang X, Bei Q, Liu G, et al. Microbial abundance and community composition in different types of paddy soils in China and their affecting factors. Acta Pedologica Sinica, 2021, 58: 767-776 [35] Ji N, Liang D, Clark LV, et al. Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome. Microbiome, 2023, 11: 216 [36] 丁爽, 魏圣钊, 陈真亮, 等. 中国西南典型森林土壤微生物在不同土壤深度下的变化特征. 应用生态学报, 2023, 34(3): 614-622 [37] Kitson E, Bell NG. The response of microbial communities to peatland drainage and rewetting: A review. Frontiers in Microbiology, 2020, 11: 582812 [38] Sun L, Tsujii Y, Xu T, et al. Species of fast bulk-soil nutrient cycling have lower rhizosphere effects: A nutrient spectrum of rhizosphere effects. Ecology, 2023, 104: e3981 [39] 吴希慧, 王蕊, 高长青, 等. 土地利用驱动的土壤性状变化影响微生物群落结构和功能. 生态学报, 2021, 41(20): 7989-8002 [40] Liu L, Tian J, Wang H, et al. Stable oxic-anoxic transitional interface is beneficial to retard soil carbon loss in drained peatland. Soil Biology and Biochemistry, 2023, 181: 109024 [41] Debray R, Herbert RA, Jaffe AL, et al. Priority effects in microbiome assembly. Nature Reviews Microbiology, 2021, 20: 109-121 [42] Li W, Kuzyakov Y, Zheng Y, et al. Depth effects on bacterial community assembly processes in paddy soils. Soil Biology and Biochemistry, 2021, 165: 108517 [43] Bastida F, Eldridge DJ, García C, et al. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. The ISME Journal, 2021, 15: 2081-2091 [44] Wang C, Qu L, Yang L, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 2021, 27: 2039-2048 [45] Li J, Pei J, Fang C, et al. Thermal adaptation of microbial respiration persists throughout long-term soil carbon decomposition. Ecology Letters, 2023, 26: 1803-1814 [46] Tian Q, Jiang Q, Huang L, et al. Vertical distribution of soil bacterial communities in different forest types along an elevation gradient. Microbial Ecology, 2023, 85: 628-641 [47] Zhang R, Tian X, Xiang Q, et al. Response of soil microbial community structure and function to different altitudes in arid valley in Panzhihua, China. BMC Microbiology, 2022, 22: 1-11 [48] Tian Q, Jiang Y, Tang Y, et al. Soil pH and organic carbon properties drive soil bacterial communities in surface and deep layers along an elevational gradient. Frontiers in Microbiology, 2021, 12: 646124 |