[1] Stevenson S, Coats S, Touma D, et al. Twenty-first century hydroclimate: A continually changing baseline, with more frequent extremes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119: e2108124119 [2] IPCC. Global Warming of 1.5 ℃: IPCC Special Report on Impacts of Global Warming of 1.5 ℃ above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge: Cambridge University Press, 2022 [3] Fay PA, Blair JM, Smith MD, et al. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences, 2011, 8: 3053-3068 [4] Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle. Nature, 2013, 500: 287-295 [5] Hicks Pries CE, Castanha C, Porras RC. The whole-soil carbon flux in response to warming. Science, 2017, 355: 1420-1423 [6] Falloon P, Jones CD, Ades M, et al. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. Global Biogeochemical Cycles, 2011, 25: GB3010 [7] Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Frontiers in Microbiology, 2012, 3, DOI: 10.3389/fmicb.2012.00348 [8] Simpson AJ, Simpson MJ, Smith E, et al. Microbially derived inputs to soil organic matter: Are current estimates too low? Environmental Science & Technology, 2007, 41: 8070-8076 [9] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 2021, 51(5): 680-695 [10] Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26: 261-273 [11] 魏芙蓉. 氮添加影响白羊草草地土壤碳氮转化的机制. 博士论文. 杨凌: 西北农林科技大学, 2023 [12] 张睿. 干旱遗留对松嫩草地土壤有机碳激发效应和微生物续埋效应的影响. 硕士论文. 长春: 东北师范大学, 2024 [13] 王誉陶. 降水变化与氮沉降对黄土高原典型草原生态系统多功能性的影响. 博士论文. 银川: 宁夏大学, 2023 [14] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000 [15] Sokol NW, Kuebbing Sara E, Karlsen-Ayala E, et al. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 2019, 221: 233-246 [16] 赵云飞. 青藏高原高寒草地土壤有机碳来源、周转及驱动因素. 博士论文. 兰州: 兰州大学, 2023 [17] Zhang XD, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28: 1201-1206 [18] Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25: 3578-3590 [19] Appuhn A, Joergensen RG. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 2006, 38: 1040-1051 [20] Lugato E, Lavallee JM, Haddix ML, et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 2021, 14: 295-300 [21] 肖若瑜, 阮宏华, 刘晖晖, 等. 干旱对杨树人工林土壤颗粒有机碳和矿物结合态有机碳的影响[EB/OL]. (2024-04-11) [2024-05-11]. 南京林业大学学报:自然科学版, 2024, https://link.cnki.net/urlid/32.1161.s.20240408.1611.008 [22] Villarino SH, Pinto P, Jackson RB, et al. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Science Advances, 2021, 7: eabd3176 [23] 张睿博, 汪金松, 王全成, 等. 土壤颗粒态有机碳与矿物结合态有机碳对气候变暖响应的研究进展. 地理科学进展, 2023, 42(12): 2471-2484 [24] Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105 [25] Griepentrog M, Bodé S, Boeckx P, et al. Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions. Global Change Biology, 2014, 20: 327-340 [26] Zhang X, Amelung W, Yuan Y, et al. Land-use effects on amino sugars in particle size fractions of an Argiudoll. Applied Soil Ecology, 1999, 11: 271-275 [27] Pei HY, Yang H, Kuzyakov Y, et al. Archaeal lipids in soils and sediments: Water impact and consequences for microbial carbon sequestration. Soil Biology & Bioche-mistry, 2022, 173: 108801 [28] Sokol NW, Slessarev E, Marschmann GL, et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology, 2022, 20: 415-430 [29] 孙思怡. 隔离降雨背景下亚热带米槠天然林根和菌根真菌对土壤有机碳形成和分解的影响. 硕士论文. 福州: 福建师范大学, 2024 [30] 李响, 何红波, 张威, 等. 外源无机氮素形态对土壤氨基糖动态的影响. 应用生态学报, 2012, 23(5): 1153-1158 [31] Cao Y, Ding J, Li J, et al. Necromass-derived soil organic carbon and its drivers at the global scale. Soil Biology & Biochemistry, 2023, 181: 109025 [32] 康健. 贺兰山西坡不同草地类型土壤微生物碳、氮特征. 硕士论文. 兰州: 兰州大学, 2006 [33] 苏兴雷, 渠晨晨, 康杰, 等. 微生物驱动土壤矿物结合态有机碳的形成[EB/OL]. (2024-04-30) [2024-05-11]. 科学通报, 2024, https://link.cnki.net/urlid/11.1784.N.20240428.0839.010 |