[1] 张清, 项春铸, 田佳怡, 等. 毛竹篼根和鞭根解磷细菌对磷添加的响应. 应用生态学报, 2025, 36(1): 284-292 [2] Lin P, Cai BY. Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms, 2023, 11: 2904 [3] 潘忠飞, 熊欢, 尹倩, 等. 油茶根际溶磷细菌对不同红壤质地磷组分及磷素转化的影响. 微生物学报, 2025, 65(5): 2014-2033 [4] 万水霞, 李帆, 王静, 等. 溶磷菌剂对玉米幼苗生长及根际土壤细菌群落结构和磷素形态的影响. 中国土壤与肥料, 2024(2): 80-88 [5] Alori ET, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 2017, 8: 258916 [6] Wang T, Xu J, Chen J, et al. Progress in microbial fertilizer regulation of crop growth and soil remediation research. Plants, 2024, 13: 346 [7] 马莹, 程莹莹, 石孝均, 等. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用. 微生物学报, 2023, 63(12): 4502-4521 [8] Rawat P, Das S, Shankhdhar D, et al. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 2021, 21: 49-68 [9] Nagrale DT, Chaurasia A, Kumar S, et al. PGPR: The treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology and Biotechnology, 2023, 39: 100 [10] Ali M, Cybulska J, Frac M, et al. Application of polysaccharides for the encapsulation of beneficial microorganisms for agricultural purposes: A review. International Journal of Biological Macromolecules, 2023, 244: 125366 [11] 汪乐盛, 李科, 方莎莎, 等. 丁酸梭菌高密度发酵及产孢条件优化. 食品与发酵工业, 2024, 50(24): 107-113 [12] Berninger T, González López Ó, Bejarano A, et al. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microbial Biotechnology, 2018, 11: 277-301 [13] 孙雪, 董永华, 王娜, 等. 耐盐碱促生菌的筛选及性能. 生物工程学报, 2020, 36(7): 1356-1364 [14] 刘雪, 温全宝, 张雷, 等. 一株钠长石分解菌的筛选及其生长特性. 微生物学通报, 2023, 50(5): 1801-1814 [15] 刘虎, 侯贞, 易建华, 等. 一株烟草根际溶磷细菌的筛选鉴定及其培养基优化. 山东农业大学学报: 自然科学版, 2016, 47(4): 514-519 [16] 赵丽娜, 陈笑含, 李明鑫, 等. 荒漠生物土壤结皮关键细菌的筛选鉴定及生态应用潜力. 应用生态学报, 2025, 36(5): 1407-1412 [17] 吕俊, 于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用. 应用生态学报, 2020, 31(9): 2923-2934 [18] 沈萍, 范秀容, 李广武. 微生物学实验. 北京: 高等教育出版社, 2003 [19] 陈容彬, 左振宇, 黄博慧, 等. 一株伯克霍尔德菌的筛选鉴定及溶磷性能优化. 应用生态学报, 2022, 33(6): 1669-1678 [20] 韦宜慧, 陈嘉琪, 董玉红, 等. 杉木人工林土壤溶磷细菌筛选及培养条件优化. 林业科学研究, 2020, 33(4): 83-91 [21] 赵君, 饶惠玲, 冯清玉, 等. 一株南方红壤区杉木根际高效解钾菌的筛选、鉴定及其培养条件优化. 林业科学研究, 2022, 35(1): 172-181 [22] Hu J, Wang Z, Williams GD, et al. Evidence for the accumulation of toxic metal(loid)s in agricultural soils impacted from long-term application of phosphate fertilizer. Science of the Total Environment, 2024, 907: 167863 [23] Zeng QW, Tang LS, Zhang Y, et al. Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC Microbiology, 2023, 23: 221 [24] Leite RDA, Costa EMD, Michel DC, et al. Genomic insights into organic acid production and plant growth promotion by different species of phosphate-solubilizing bacteria. World Journal of Microbiology and Biotechnology, 2024, 40: 1-14 [25] Hong YL, Chen SS, Li MY, et al. Phosphate-solubilizing function of Pediococcus pentosaceus PSM16 and its underlying mechanism. Microbiology Spectrum, 2025: e00491-25 [26] Liu X, Dong H, Wang H, et al. Recent advances in genetic engineering strategies of Sinorhizobium meliloti. ACS Synthetic Biology, 2024, 13: 3497-3506 [27] Gupta R, Kumari A, Sharma S, et al. Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 2022, 29: 35-42 [28] Hampil B. The influence of temperature on the life processes and death of bacteria. The Quarterly Review of Biology, 1932, 7: 172-196 [29] Zhang Y, Wan S, Shi F, et al. Identification and characterization of a phosphate-solubilizing bacterium and its growth-promoting effect on moso bamboo seedlings. Forests, 2024, 15: 364 [30] Zhu Y, Cai HJ, Song LB, et al. Aerated irrigation promotes soil respiration and microorganism abundance around tomato rhizosphere. Soil Science Society of America Journal, 2019, 83: 1343-1355 [31] Wei YQ, Zhao Y, Fan YY, et al. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting. Bioresource Technology, 2017, 241: 134-141 [32] Fatima F, Ahmad M, Verma S, et al. Relevance of phosphate solubilizing microbes in sustainable crop production: A review. International Journal of Environmental Science and Technology, 2022, 19: 9283-9296 [33] Suleimanova A, Bulmakova D, Sokolnikova L, et al. Phosphate solubilization and plant growth promotion by Pantoea brenneri soil isolates. Microorganisms, 2023, 11: 1136 [34] Li LL, Chen RB, Zuo ZY, et al. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB. World Journal of Microbiology and Biotechnology, 2020, 36: 27 [35] Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 2017, 33: 197 [36] Reyes I, Bernier L, Simard RR, et al. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology, 1999, 28: 281-290 [37] Stefanoni Rubio PJ, Godoy MS, Della Mónica IF, et al. Carbon and nitrogen sources influence tricalcium phosphate solubilization and extracellular phosphatase activity by Talaromyces flavus. Current Microbiology, 2016, 72: 41-47 [38] Vassilev N, Mendes G, Costa M, et al. Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates. Geomicrobiology Journal, 2014, 31: 751-763 |