[1] Food and Agriculture Organization of the United Nations.Global Status of Salt-affected Soils. Rome: FAO, 2024: 15,42 [2] 国家盐碱地综合利用技术创新中心, 中国农业科学院农业资源与农业区划研究所. 盐碱地综合利用技术发展报告(2024年). 北京, 2024 [3] Bujak J, Bujak A. Origin and evolution of the Azolla superorganism. Plants, 2024, 13: 2106 [4] Brouwer P, Brautigam A, Buijs VA, et al. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by Nostoc azollae sustain the astonishing productivity of Azolla ferns without nitrogen fertilizer. Frontiers in Plant Science, 2017, 8: 442 [5] 戴玲芬, 何慧, 林惠民. 谷氨酰胺合成酶在固氮鱼腥藻固氮调节中的作用. 水生生物学报, 1987, 11(4): 344-352 [6] 刘中柱, 魏文雄, 郑国璋, 等. 红萍富钾生理的研究Ⅰ. 红萍对水体中钾的吸收. 中国农业科学, 1982, 15(4): 82-87 [7] Kimani SM, Bimantara PO, Hattori S, et al. Co-application of poultry-litter biochar with Azolla has synergistic effects on CH4 and N2O emissions from rice paddy soils. Heliyon, 2020, 6: e05042 [8] Yang G, Ji H, Sheng J, et al. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Science of the Total Environment, 2020, 743: 140799 [9] Suntoro S, Herdiansyah G, Minardi S, et al. Use of Azolla in organic farming on availability and uptake of N, P, K of rice paddy (Oryza sativa L.). Journal of Applied and Natural Science, 2024, 16: 299-307 [10] Hosseini EK, Derakhshi P, Rabbani M, et al. Pollutant removal from dairy waste water using live Azolla filiculoides in batch and continuous bioreactors. Water Environment Research, 2021,93: 2122-2134 [11] Chanapanchai S, Fitriya W, Artadana IBM, et al. Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia. Journal of Integrative Agriculture, 2025, 24: 3004-3023 [12] Korsa G, Alemu D, Ayele A, et al. Azolla plant production and their potential applications. International Journal of Agronomy, 2024, 2024: 1-12 [13] Al-Huqail AA, Aref NMA, Khan F, et al. Azolla filiculoides extract improved salt tolerance in wheat (Triticum aestivum L.) is associated with prompting osmostasis, antioxidant potential and stress-interrelated genes. Scientific Reports, 2024, 14: 11100 [14] Collinson ME, Barke J, van der Burgh J, et al. A new species of the freshwater fern Azolla (Azollaceae) from the Eocene Arctic Ocean. Review of Palaeobotany and Palynology, 2009, 155: 1-14 [15] Collinson ME, Barke J, van der Burgh J, et al. Did a single species of Eocene Azolla spread from the Arctic Basin to the southern North Sea? Review of Palaeobotany and Palynology, 2010, 159: 152-165 [16] 章宁, 唐龙飞. 不同盐浓度对红萍生长及若干生理指标的影响. 亚热带植物科学, 1994, 23(1): 41-45 [17] 刘中柱, 郑伟文. 中国满江红. 北京: 农业出版社, 1989: 21-26 [18] Thagela P, Yadav RK, Mishra V, et al. Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylla primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis. Protoplasma, 2016, 254: 303-313 [19] Rai V, Sharma NK, Rai AK. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress. Journal of Plant Physiology, 2006, 163: 937-944 [20] 章宁, 陈坚, 魏文雄, 等. 在盐胁迫下红萍超氧物岐化酶SOD及叶肉细胞亚显微结构的变化. 福建省农科院学报, 1992, 7(1): 41-48 [21] Rai V, Rai AK. Growth behaviour of Azolla pinnata at various salinity levels and induction of high salt tolerance. Plant and Soil, 1999, 206: 79-84 [22] Singh SS, Upadhyay RS, Mishra AK. Physiological interactions in Azolla-Anabaena system adapting to the salt stress. Journal of Plant Interactions, 2008, 3: 145-155 [23] 葛世安, 徐载兴, 沈志豪. 细满江红的耐盐性能和在新围海涂稻田的养殖利用效果. 浙江农业科学, 1980, 1(3): 17-20 [24] Yadav RK, Tripathi K, Ramteke PW, et al. Salinity induced physiological and biochemical changes in the freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana. Plant Physiology and Biochemistry, 2016, 106: 39-45 [25] Thagela P, Yadav RK, Tripathi K, et al. Salinity induced changes in the chloroplast proteome of the aquatic pteridophyte Azolla microphylla. Symbiosis, 2017, 75: 61-67 [26] Mishra AK, Singh SS. Protection against salt toxicity in Azolla pinnata-Anabaena azollae symbiotic association by using combined-N sources. Acta Biologica Hungarica, 2006, 57: 355-365 [27] Masood A, Shah NA, Zeeshan M, et al. Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environmental and Experimental Botany, 2006, 58: 216-222 [28] Abraham G, Dhar DW. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.Protoplasma, 2010, 245: 105-111 [29] 陈坚, 章宁. 高温及盐胁迫对萍体电解质与脯氨酸的影响及其与抗逆性的关系. 福建省农科院学报, 1994, 9(2): 28-33 [30] Kempen MML, Smolders AJP, Bögemann GM, et al. Responses of the Azolla filiculoides Stras.-Anabaena azollae Lam. association to elevated sodium chloride concentrations: Amino acids as indicators for salt stress and tipping point. Aquatic Botany, 2013, 106: 20-28 [31] Panda SK, Upadhyay RK, Upadhyaya H. Salinity stress induced physiological and biochemical changes in Azolla pinnata. Acta Botanica Hungarica, 2006, 48: 369-380 [32] 章宁, 唐龙飞, 郑德英. 红萍盐害若干生理生化机理的探讨. 福建省农科院学报, 1995, 10(1): 28-32 [33] Abraham G. Antioxidant enzyme status in Azolla microphylla in relation to salinity and possibilities of environmental monitoring. Thin Solid Films, 2010, 519: 1240-1243 [34] Rajarathinam K, Padhya MA. Influence of salt on the growth, nitrogenase and ammonia assimilating enzymes of Azolla pinnata R. Br. Current Science, 1988, 57: 1183-1184 [35] Haller WT, Sutton DL, Barlowe WC. Effects of salinity on growth of several aquatic macrophytes. Ecology, 1974, 55: 891-894 [36] Narayan H, Kumar U, Chowdhury T, et al. Effect of salinity stress on growth, chlorophyll, antioxidant enzymes and nutrient content in Azolla spp.Aquatic Botany, 2024, 192: 103750 [37] Zimmerman WJ. Biomass and pigment production in three isolates of Azolla I. response to water stress. Annals of Botany, 1985, 56: 689-699 [38] Holst RW, Yopp JH. Studies of the Azolla-Anabaena symbiosis using Azolla mexicana, I. Growth in nature and laboratory. American Fern Journal, 1979, 69: 17-25 [39] 郑德英, 唐龙飞, 章宁, 等. 回交满江红3号(MH3-1)若干抗逆特性研究. 福建省农科院学报, 1994, 9(2): 21-27 [40] Mostafa EM, Tammam AA. The oxidative stress caused by NaCl in Azolla carolinianais mitigated by nitrate. Journal of Plant Interactions, 2011, 7: 356-366 [41] Hasegawa PM. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 2013, 92: 19-31 [42] Kinraide TB. Interactions among Ca2+, Na+ and K+ in salinity toxicity: Quantitative resolution of multiple toxic and ameliorative effects. Journal of Experimental Botany, 1999, 50: 1495-1505 [43] Yadav RK, Ramteke PW, Tripathi K, et al. Salinity induced alterations in the growth and cellular ion content of Azolla caroliniana and Azolla microphylla. Journal of Plant Growth Regulation, 2023, 42: 867-876 [44] 杨涓, 许兴. 盐胁迫下植物有机渗透调节物质积累的研究进展. 宁夏农学院学报, 2003, 24(4): 86-91 [45] Alia, Mohanty P, Matysik1 J. Effect of proline on the production of singlet oxygen. Amino Acids, 2001, 21: 195-200 [46] Niven GW, Kerby NW, Rowell P, et al. The effects of salt on nitrogen-fixation and ammonium assimilation in Anabaena variabilis. British Phycological Journal, 1987, 22: 411-416 [47] Mishra AK. Fox and fix mutants of Anabaena 7120 defective in heterocyst development and nitrogen fixation. Algological Studies, 2003, 108: 75-85 [48] Thagela P, Yadav RK, Dahuja A, et al. Physiological and proteomic changes in Azolla microphylla roots upon exposure to salinity.Indian Journal of Biotechnology, 2016, 15: 101-106 [49] Yadav RK, Tripathi K, Mishra V, et al. Proteomic eva-luation of the freshly isolated cyanobionts from Azolla microphylla exposed to salinity stress. Symbiosis, 2018, 77: 249-256 |