[1] Liu ZY, Li YL, Sun XH, et al. Superior performance of K/Co2AlO4 catalysts for the oxidative dehydrogenation of ethylbenzene to styrene with N2O as an oxidant. Journal of Industrial and Engineering Chemistry, 2022, 112: 67-75 [2] 谢君毅, 徐侠, 蔡斌, 等. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响. 南京林业大学学报: 自然科学版, 2022, 46(2): 1-11 [3] 刘辉, 牟长城, 吴彬, 等. 黑龙江帽儿山温带森林类型土壤非生长季温室气体排放特征. 林业科学, 2020, 56(10): 11-25 [4] 黄志宏, 张宇鸿, 沈燕, 等. 中亚热带森林地表CH4和N2O通量影响因素分析. 中南林业科技大学学报, 2016, 36(4): 56-63 [5] 耿静, 程淑兰, 方华军, 等. 氮素类型和剂量对寒温带针叶林土壤N2O排放的影响. 生态学报, 2017, 37(2): 395-404 [6] 吴涛, 李华, 王振领, 等. pH和含水量对设施菜地土壤N2O排放的影响. 环境化学, 2018, 37(1): 146-153 [7] 谭立山. 农业土壤N2O产生途径及其影响因素研究进展. 亚热带农业研究, 2017, 13(3): 196-204 [8] Zou J, Tobin B, Luo Y, et al. Differential responses of soil CO2 and N2O fluxes to experimental warming. Agricultural & Forest Meteorology, 2018, 259: 11-22 [9] 王意锟, 吕耀平, 丁枫华, 等. 城市绿地土壤动物群落结构与土壤理化性质的关系. 东北林业大学学报, 2022, 50(1): 72-76 [10] Lubbers IM, Brussaard L, Otten W, et al. Earthworm-induced N mineralization in fertilized grassland increases both N2O emission and crop-N uptake. European Journal of Soil Science, 2011, 62: 152-161 [11] Lubbers IM, Groenigen KJ, Fonte SJ, et al. Greenhouse-gas emissions from soils increased by earthworms. Nature Climate Change, 2013, 3: 187-194 [12] Schultheiss P, Nooten S, Wang R, et al. The abundance, biomass, and distribution of ants on Earth. Proceedings of the National Academy of Sciences of the Uni-ted States of America, 2022, 119: e2201550119 [13] Cammeraat ELH, Risch AC. The impact of ants on mine-ral soil properties and processes at different spatial scales. Journal of Applied Entomology, 2010, 132: 285-294 [14] 李霁航, 王邵军, 王红, 等. 蚂蚁筑巢对高檐蒲桃热带森林群落土壤呼吸的影响. 生态学报, 2018, 38(17): 6033-6042 [15] 左倩倩, 王邵军, 王平, 等. 蚂蚁筑巢对西双版纳热带森林土壤有机氮矿化的影响. 生态学报, 2021, 41(18): 7339-7347 [16] Khamzina A, Lamers JPA, Martius C, et al. Above- and belowground litter stocks and decay at a multi-species afforestation site on arid, saline soil. Nutrient Cycling in Agroecosystems, 2016, 104: 187-199 [17] Wu H, Lu X, Tong S, et al. Soil engineering ants increase CO2 and N2O emissions by affecting mound soil physicochemical characteristics from a marsh soil: A laboratory study. Applied Soil Ecology, 2015, 87: 19-26 [18] Mueller UG, Mikheyev AS, Hong E, et al. Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 4053-4056 [19] Jílková V, Cajthaml T, Frouz J, et al. Respiration in wood ant (Formica aquilonia) nests as affected by altitudinal and seasonal changes in temperature. Soil Bio-logy & Biochemistry, 2015, 86: 50-57 [20] Wang SJ, Cao QB, Zuo QQ, et al. Species-specific effects of belowground-nesting ants on soil N2O emissions in a tropical forest. Soil Biology and Biochemistry, 2020, 15: 1108020 [21] 张雪慧, 张仲胜, 武海涛. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展. 应用生态学报, 2020, 31(12): 4301-4311 [22] 赵一军, 赵敏, 毛文娅, 等. 蚂蚁对草地动植物及土壤作用的研究进展. 云南农业大学学报: 自然科学版, 2019, 34(5): 889-895 [23] Härkönen SK, Sorvari J. Effect of host species, host nest density and nest size on the occurrence of the shi-ning guest ant Formicoxenus nitidulus (Hymenoptera: Formicidae). Journal of Insect Conservation, 2017, 21: 477-485 [24] 杨紫唯, 陈克龙, 张乐乐, 等. 青海湖流域两种不同高寒湿地类型CO2、CH4和N2O排放通量对模拟降水的响应. 生态科学, 2022, 41(2): 211-219 [25] 张哲, 王邵军, 陈闽昆, 等. 西双版纳不同演替阶段热带森林土壤N2O排放的时间特征. 生态环境学报, 2019, 28(4): 702-708 [26] 曹乾斌, 王邵军, 任玉连, 等. 蚂蚁筑巢对西双版纳热带森林土壤碳矿化动态的影响. 应用生态学报, 2019, 30(12): 4231-4239 [27] 张雪慧, 张仲胜, 武海涛. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展. 应用生态学报, 2020, 31(21): 4301-4311 [28] 杨析, 邵明安, 李同川, 等. 黄土高原北部日本弓背蚁巢穴结构特征及其影响因素. 土壤学报, 2018, 55(4): 868-878 [29] 李少辉, 王邵军, 张哲, 等. 蚂蚁筑巢对西双版纳热带森林土壤易氧化有机碳时空动态的影响. 应用生态学报, 2019, 30(2): 413-419 [30] 王冠钦, 李飞, 彭云峰, 等. 土壤含水量调控高寒草原生态系统N2O排放对增温的响应. 植物生态学报, 2018, 42(1): 105-115 [31] 韩雪, 陈宝明. 增温对土壤N2O和CH4排放的影响与微生物机制研究进展. 应用生态学报, 2020, 31(11): 3906-3914 [32] 曹亚玲, 俞梦笑, 江军, 等. 模拟酸雨对南亚热带典型森林土壤N2O排放的影响. 应用生态学报, 2021, 32(4): 1213-1220 [33] 苏星源, 吴世杰, 高威, 等. 两种水分含量下生物质炭对黑土N2O排放及硝化反硝化基因丰度的影响. 土壤, 2022, 54(5): 928-935 [34] 陈元瑶, 魏琮, 贺虹, 等. 秦岭地区2种蚂蚁巢内土壤理化性质和微生物量的相关性研究. 西北林学院学报, 2012, 27(2): 121-126 [35] 张文文, 肖晗冉, 杨宝玲, 等. 不同土地利用类型土壤动物对土壤氮矿化季节变化的影响. 南京林业大学学报: 自然科学版, 2016, 40(6): 20-26 [36] Wu H, Batzer DP, Yan X, et al. Contributions of ant mounds to soil carbon and nitrogen pools in a marsh wetland of Northeastern China. Applied Soil Ecology, 2013, 70: 9-15 [37] 陈闽昆, 王邵军, 陈武强, 等. 蚂蚁筑巢对西双版纳热带森林土壤微生物生物量碳及熵的影响. 应用生态学报, 2019, 30(9): 2973-2982 [38] 曹乾斌, 王邵军, 陈闽昆, 等. 不同恢复阶段热带森林土壤nirS型反硝化微生物群落结构及多样性特征. 生态学报, 2021, 41(2): 626-636 [39] Boots B, Keith AM, Niechoj R, et al. Unique soil microbial assemblages associated with grassland ant species with different nesting and foraging strategies. Pedobiologia, 2012, 55: 33-40 [40] 郑洁, 程梦华, 栾璐, 等. 秸秆还田对玉米根际氨氧化微生物群落及红壤硝化潜势的影响. 生态学报, 2022, 42(12): 5022-5033 [41] 肖杰. 长期不同施肥下旱地塿土N2O排放特征及模拟研究. 硕士论文. 陕西杨凌: 西北农林科技大学, 2019 [42] 孙志高, 孙文广. 黄河口不同恢复阶段湿地土壤N2O产生过程对氮输入的响应. 应用生态学报, 2016, 27(4): 1135-1144 [43] 车昭碧, 徐鹏飞, 郭亚亚, 等. 不同草地类型的北方蚁蚁巢及周围土壤理化性质特征分析. 草地学报, 2021, 29(5): 982-990 [44] Wang YY, Luo DH, Xiong ZY, et al. Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation. Soil & Tillage Research, 2023, 225: 105543 [45] 王娅静, 李罗英, 郭景恒, 等. pH值对森林土壤化学反硝化强度和产物的影响. 森林与环境学报, 2022, 42(4): 401-408 |