[1] Jia PP, Shang TH, Zhang JH, et al. Inversion of soil pH during the dry and wet seasons in the Yinbei region of Ningxia, China, based on multi-source remote sen-sing data. Geoderma Regional, 2021, 25: e00399 [2] 陈睿华, 尚天浩, 张俊华, 等. 不同光谱类型对银川平原土壤含盐量反演精度的影响与校正. 应用生态学报, 2022, 33(4): 922-930 [3] 尚天浩, 陈睿华, 张俊华, 等. 基于实测高光谱与Sentinel-2B数据的银北土壤Na+含量估测. 应用生态学报, 2021, 32(3): 1023-1032 [4] 张俊华, 贾科利. 典型龟裂碱土土壤水分光谱特征及预测. 应用生态学报, 2015, 26(3): 884-890 [5] Jia PP, Zhang JH, He W, et al. Combination of hyperspectral and machine learning to invert soil electrical conductivity. Remote Sensing, 2022, 14: 2602 [6] Li YS, Chang CY, Wang ZR, et al. Upscaling remote sensing inversion and dynamic monitoring of soil salini-zation in the Yellow River Delta, China. Ecological Indicators, 2023, 148: 110087 [7] Hu J, Peng J, Zhou Y, et al. Quantitative estimation of soil salinity using UAV-Borne hyperspectral and satellite multispectral images. Remote Sensing, 2019, 11: 736 [8] 纪景纯, 赵原, 邹晓娟, 等. 无人机遥感在农田信息监测中的应用进展. 土壤学报, 2019, 56(4): 773-784 [9] 王瑾杰, 丁建丽, 葛翔宇, 等. 分数阶微分技术在机载高光谱数据估算土壤含水量中的应用. 光谱学与光谱分析, 2022, 42(11): 3559-3567 [10] Wang DY, Chen HY, Wang ZR, et al. Inversion of soil salinity according to different salinization grades using multi-source remote sensing. Geocarto International, 2022, 37: 1274-1293 [11] 王梦迪, 何莉, 刘潜, 等. 基于小麦冠层无人机高光谱影像的农田土壤含水率估算. 农业工程学报, 2023, 39(6): 120-129 [12] Ge XY, Wang JZ, Ding JL, et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ, 2019, 7: e6926 [13] Zhu CM, Ding JL, Zhang ZP, et al. Exploring the potential of UAV hyperspectral image for estimating soil salinity: Effects of optimal band combination algorithm and random forest. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 279: 121416 [14] 于雷, 洪永胜, 周勇, 等. 高光谱估算土壤有机质含量的波长变量筛选方法. 农业工程学报, 2016, 32(13): 95-102 [15] 唐海涛, 孟祥添, 苏循新, 等. 基于CARS算法的不同类型土壤有机质高光谱预测. 农业工程学报, 2021, 37(2): 105-113 [16] Ge XY, Ding JL, Wang JZ, et al. Estimation of soil moisture content based on competitive adaptive reweighted sampling algorithm coupled with machine learning. Acta Optica Sinica, 2018, 38: 1030001 [17] Yang N, Yang S, Cui WX, et al. Effect of spring irrigation on soil salinity monitoring with UAV-borne multispectral sensor. International Journal of Remote Sensing, 2021, 42: 8952-8978 [18] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000: 183-187 [19] 刘兰军, 翟永庆, 郑俊俊, 等. 基于PSO-CNN的土壤氮含量可见/近红外光谱建模. 光学技术, 2021, 47(4): 438-445 [20] Zhou JP, Xu YP, Gu XH, et al. High-precision mapping of soil organic matter based on UAV imagery using machine learning algorithms. Drones, 2023, 7: 290 [21] He ZH, Ma ZH, Li MC, et al. Selection of a calibration sample subset by a semi-supervised method. Journal of Near Infrared Spectroscopy, 2018, 26: 87-94 [22] Ma CY, Liu X, Li SQ, et al. Accuracy evaluation of hyperspectral inversion of environmental parameters of loess profile. Environmental Earth Sciences, 2023, 82: 251 [23] Luo C, Zhang WQ, Zhang XL, et al. Mapping soil organic matter content using Sentinel-2 synthetic images at different time intervals in Northeast China. International Journal of Digital Earth, 2023, 16: 1094-1107 [24] 田美玲, 葛翔宇, 丁建丽, 等. 耦合机器学习和机载高光谱数据的土壤含水量估算. 激光与光电子学进展, 2020, 57(9): 232-241 [25] Brady NC, Weil RR. 李保国, 徐建明, 译. 土壤学与生活. 北京: 科学出版社, 2019 [26] 张飞, 塔西甫拉提·特依拜, 丁建丽, 等. 渭干河-库车河三角洲绿洲土壤盐渍化现状特征及其与光谱的关系. 环境科学研究, 2009, 22(2): 227-235 [27] 张晓华, 常庆瑞, 章曼, 等. 基于高光谱植被指数的西北玉米不同时期叶绿素含量估测. 中国农业大学学报, 2015, 20(4): 75-81 [28] 葛翔宇, 丁建丽, 王敬哲, 等. 一种基于无人机高光谱影像的土壤墒情检测新方法. 光谱学与光谱分析, 2020, 40(2): 602-609 [29] Biney JKM, Blöcher JR, Borùvka L, et al. Does the limited use of orthogonal signal correction pre-treatment approach to improve the prediction accuracy of soil organic carbon need attention? Geoderma, 2021, 388: 114945 [30] Hong YS, Chen YY, Yu L, et al. Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS-NIR spectroscopy. Remote Sensing, 2018, 10: 479 [31] 张东辉, 赵英俊, 秦凯, 等. 光谱变换方法对黑土养分含量高光谱遥感反演精度的影响. 农业工程学报, 2018, 34(20): 141-147 [32] 蔡亮红, 丁建丽. 小波变换耦合CARS算法提高土壤水分含量高光谱反演精度. 农业工程学报, 2017, 33(16): 144-151 [33] 许童羽, 白驹驰, 郭忠辉, 等. 基于无人机高光谱遥感的水稻氮营养诊断方法. 农业机械学报, 2023, 54(2): 189-197 [34] 张俊华, 马天成, 贾科利. 典型龟裂碱土土壤光谱特征影响因素研究. 农业工程学报, 2014, 30(23): 158-165 [35] Wang F, Shi Z, Biswas A, et al. Multi-algorithm comparison for predicting soil salinity. Geoderma, 2020, 365: 114211 [36] Zhang RH, Wei X, Lu ZH, et al. Training model for predicting adsorption energy of metal ions based on machine learning. Journal of Inorganic Materials, 2021, 36: 1178-1184 |