[1] Tian M, Yu G, He N, et al. Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Scientific Reports, 2016, 6: 19703 [2] Violle C, Navas ML, Vile D, et al. Let the concept of trait be functional! Oikos, 2007, 116: 882-892 [3] He D, Chen Y, Zhao K, et al. Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest. Annals of Botany, 2018, 121: 1173-1182 [4] Prentice IC, Dong N, Gleason SM, et al. Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 2014, 17: 82-91 [5] 刘晓娟, 马克平. 植物功能性状研究进展. 中国科学:生命科学, 2015, 45(4): 325-339 [6] 何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战:从器官到群落. 生态学报, 2018, 38(19): 6787-6796 [7] Sack L, Scoffoni C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 2013, 198: 983-1000 [8] 李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义. 植物生态学报, 2013, 37(7): 691-698 [9] 汪矛, 郑相如, 张志农. 叶脉的形态与结构. 生物学通报, 1998, 33(8): 11-13 [10] Comita LS, Condit R, Hubbell SP. Developmental changes in habitat associations of tropical trees. Journal of Ecology, 2007, 95: 482-492 [11] Uhl D, Mosbrugger V. Leaf venation density as a climate and environmental proxy: A critical review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology,1999, 149: 15-26 [12] Roth-Nebelsick A. Evolution and function of leaf venation architecture: A review. Annals of Botany, 2001, 87: 553-566 [13] 徐婷, 赵成章, 段贝贝, 等. 兰州北山刺槐不同等级叶脉密度与叶大小关系的坡向差异性. 生态学杂志, 2016, 35(1): 41-47 [14] 朱燕华. 东亚地区栓皮栎(Quercus variabilis)叶片性状的变异格局及其对环境变化的响应. 博士论文. 上海: 上海交通大学, 2013 [15] Sack L, Scoffoni C, Mckown AD, et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 2012, 3: 837 [16] Shi P, Miao Q, Niinemets Ü, et al. Scaling relationships of leaf vein and areole traits versus leaf size for nine Magnoliaceae species differing in venation density. American Journal of Botany, 2022, 109: 899-909 [17] Baird AS, Taylor SH, Pasquet-Kok J, et al. Developmental and biophysical determinants of grass leaf size worldwide. Nature, 2021, 592: 242-247 [18] Wei H, Luo T, Wu B. Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China. Annals of Botany, 2016, 118: 541-553 [19] 朱荣, 杨雪, 龚浩鑫. 青藏高原东缘松科植物叶脉性状的变异. 应用生态学报, 2023, 34(5): 1203-1210 [20] 陈静, 庄立会, 沐建华, 等. 云南文山石漠化区车桑子叶脉密度与叶氮含量关系对生境的响应. 生态学报, 2020, 40(11): 3706-3714 [21] Pelegrín EG, Peguero-Pina JJ, Sancho-Knapik D. Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Cham, Switzerland: Springer International Publishing, 2017 [22] Fang JY, Wang ZH, Tang ZY. Atlas of Woody Plants in China: Distribution and Climate. Beijing: Higher Education Press, 2009 [23] Pecl GT, Araújo MB, Bell JD, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355: 1-9 [24] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6): 533-548 [25] 董鸣. 陆地生物群落调查观测与分析. 北京: 中国标准出版社, 1997 [26] 刘光崧. 土壤理化分析与剖面描述. 北京: 中国标准出版社, 1996 [27] Wang T, Wang G, Innes J, et al. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Frontiers of Agricultural Science and Engineering, 2017, 4: 448-458 [28] 徐伟忠, 朱丽霞, 赵根. 植物生态适应性在植物水生诱导上的运用. 分子植物育种, 2006, 4(增刊1): 143-150 [29] Lin Y, Kuang L, Tang S, et al. Leaf traits from stomata to morphology are associated with climatic and edaphic variables for dominant tropical forest evergreen oaks. Journal of Plant Ecology, 2021, 14: 1115-1127 [30] 缪沁玥, 王林, 郭旭晨, 等. 石楠叶片面积和叶脉性状之间的关系. 西部林业科学, 2023, 52(1): 86-91 [31] Teshera-Levye J, Miles B, Terwilliger V et al. Drivers of habitat partitioning among three Quercus species along a hydrologic gradient. Tree Physiology, 2020, 40: 142-157 [32] 黄睿智, 王奇, 孙婧依, 等. 太白山南北坡栎类林物种组成与群落特征比较. 应用生态学报, 2023, 34(8): 2055-2064 [33] 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 2005, 22(增刊1): 118-127 [34] 陈丹丹, 郝凡, 张益菻, 等. 河南4种栎属树木叶脉序特征研究. 西北林学院学报, 2018, 33(1): 74-77 [35] Westoby M, Falster DS, Moles AT, et al. Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33: 125-159 [36] 孙素静, 李芳兰, 包维楷. 叶脉网络系统的构建和系统学意义研究进展. 热带亚热带植物学报, 2015, 23(3): 353-360 [37] Blonder B, Violle C, Bentley LP, et al. Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 2011, 14: 91-100 [38] Lu Z, Xie K, Pan Y, et al. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy. Plant, Cell & Environment, 2019, 42: 2231-2244 [39] Royer DL, Mcelwain JC, Adams JM. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytologist, 2008, 179: 808-817 [40] Lawson T, Vialet-Chabrand S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 2019, 221: 93-98 [41] Pantin F, Fanciullino AL, Massonnet C, et al. Buffering growth variations against water deficits through timely carbon usage. Frontiers in Plant Science, 2013, 4: 483 [42] Wang CS, Lyu, WW, Jiang LL, et al. Changes in leaf vein traits among vein types of alpine grassland plants on the Tibetan Plateau. Journal of Mountain Science, 2020, 17: 2161-2169 [43] Schneider JV, Negraschis V, Habersetzer J, et al. Taxonomic diversity masks leaf vein-climate relationships: Lessons from herbarium collections across a latitudinal rainfall gradient in West Africa. Botany Letters, 2018, 165: 384-395 [44] 李丹洋. 黄土高原草地植物次级叶脉性状沿环境梯度变化规律. 硕士论文. 陕西杨凌: 西北农林科技大学, 2021 [45] Brodribb TJ, Jordan GJ. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 2011, 192: 437-448 [46] Philpott J. Blade tissue organization of foliage leaves of some Carolina shrub-bog species as compared with their Appalachian mountain affinities. Botanical Gazette, 1956, 118: 88-105 [47] 张明, 高慧蓉, 莫惟轶, 等. 黄土高原草地植物叶脉性状沿环境梯度的变化规律. 生态学报, 2022, 42(19): 8082-8093 |