[1] Chen LJ, Xiang HZ, Miao Y, et al. An overview of cold resistance in plants. Journal of Agronomy and Crop Science, 2014, 200: 237-245 [2] Ghosh D, Xu J. Abiotic stress responses in plant roots: A proteomics perspective. Frontiers in Plant Science, 2014, 5: 66977 [3] 赵鹏, 常涛, 张玉鑫. 根区温度对甜瓜幼苗生长的影响. 北方园艺, 2008(12): 88-90 [4] Jiao CJ, Lan GP, Sun YH, et al. Dopamine alleviates chilling stress in watermelon seedlings via modulation of proline content, antioxidant enzyme activity, and polyamine metabolism. Journal of Plant Growth Regulation, 2021, 40: 277-292 [5] Song Y, Jiang M, Zhang HL, et al. Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L.) by regulating antioxidative system and chilling response transcription factors. Molecules, 2021, 26: 2196 [6] Tewari RK, Yadav N, Gupta R, et al. Oxidative stress under macronutrient deficiency in plants. Journal of Soil Science and Plant Nutrition, 2021, 21: 832-859 [7] 杨世春. 外源5-氨基乙酰丙酸(ALA)对亚低温胁迫下番茄幼苗光抑制保护和离子吸收分配研究. 硕士论文. 杨凌: 西北农林科技大学, 2021 [8] Gonzalez-Fuentes JA, Shackel K, Lieth JH, et al. Diurnal root zone temperature variations affect strawberry water relations, growth, and fruit quality. Scientia Horticulturae, 2016, 203: 169-177 [9] Bai LQ, Deng HH, Zhang XC, et al. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures. PLoS One, 2016, 11: e0156188 [10] 赵海亮, 左璐, 张璐, 等. 低温胁迫下外源褪黑素对番茄幼苗光抑制的缓解效应. 应用生态学报, 2023, 34(1): 151-159 [11] Sun B, Liu GL, Phan TT, et al. Effects of cold stress on root growth and physiological metabolisms in seedlings of different sugarcane varieties. Sugar Tech, 2017, 19: 165-175 [12] Zhao Y, Tang J, Brummell DA, et al. Abscisic acid alleviates chilling injury in cold-stored peach fruit by regulating the metabolism of sucrose. Scientia Horticulturae, 2022, 298: 111000 [13] Gangola MP, Ramadoss BRM. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants. New York: Academic Press, 2018: 17-38 [14] Salmon Y, Lintunen A, Dayet A, et al. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytologist, 2020, 226: 690-703 [15] Afzal S, Chaudhary N, Singh NK. Plant Growth Regulators. Berlin: Springer, 2021: 305-334 [16] Yoon J, Cho LH, Tun W, et al. Sucrose signaling in higher plants. Plant Science, 2020, 302: 110703 [17] 赵莹, 杨克军, 赵长江, 等. 外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫. 中国农业科学, 2014, 47(20): 3962-3972 [18] 饶本强, 吴沛沛, 李敦海, 等. 低温驯化和外源糖对爪哇伪枝藻冷胁迫的影响. 生态科学, 2011, 30(2): 128-134 [19] Ma QX, Ma JZ, Wang J, et al. Glucose and sucrose supply regulates the uptake, transport, and metabolism of nitrate in pak choi. Agronomy Journal, 2018, 110: 535-544 [20] 孔令剑, 朱倩, 单玉姿, 等. 蔗糖对低磷胁迫条件下大豆苗期根系形态和物质积累的影响. 大豆科学, 2018, 37(2): 239-245 [21] Zulfiqar F, Akram NA, Ashraf M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta, 2020, 251: 3 [22] Li LJ, Lu XC, Ma HY, et al. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. Journal of Plant Research, 2018, 131: 865-878 [23] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000 [24] Ahmad S, Kamran M, Ding RX, et al. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ, 2019, 7: e7793 [25] Heshmati S, Dehaghi MA, Farooq M, et al. Role of melatonin seed priming on antioxidant enzymes and biochemical responses of Carthamus tinctorius L. under drought stress conditions. Plant Stress, 2021, 2: 100023 [26] 杜清洁, 代侃韧, 李建明, 等. 亚低温与干旱胁迫对番茄叶片光合及荧光动力学特性的影响. 应用生态学报, 2015, 26(6): 1687-1694 [27] Liu T, Han YQ, Shi JL, et al. Abscisic acid involved in trehalose improved melon photosynthesis via regulating oxidative stress tolerance and cell morphology structure under cold stress. Environmental and Experimental Botany, 2022, 202: 105042 [28] 朱佳, 梁永超, 丁燕芳, 等. 硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响. 中国农业科学, 2006, 39(9): 1780-1788 [29] 傅国海, 杨其长, 刘文科, 等. 根区温度对设施作物生理生态影响的研究进展. 中国蔬菜, 2016(10): 20-27 [30] 闫秋艳, 段增强, 李汛, 等. 根区温度对黄瓜生长和土壤养分利用的影响. 土壤学报, 2013, 50(4): 752-760 [31] Hsu CH, Hsu YT. Biochemical responses of rice roots to cold stress. Botanical Studies, 2019, 60: 14 [32] Hussain HA, Men SN, Hussain S, et al. Maize tole-rance against drought and chilling stresses varied with root morphology and antioxidative defense system. Plants, 2020, 9: 720 [33] Karimi R, Amini H, Ghabooli M. Root endophytic fungus Piriformospora indica and zinc attenuate cold stress in grapevine by influencing leaf phytochemicals and mi-nerals content. Scientia Horticulturae, 2022, 293: 100665 [34] 刘冰珠, 张锋, 雷蕾, 等. 根区温度胁迫对番茄幼苗根系生长及蔗糖代谢的影响. 中国蔬菜, 2023(1): 68-77 [35] 张佩茹. 根区低温对番茄幼苗矿质元素吸收运输的影响. 硕士论文. 沈阳: 沈阳农业大学, 2020 [36] Xiong Y, McCormack M, Li L, et al. Glucose-TOR signaling reprograms the transcriptome and activates meristems. Nature, 2013, 496: 181-186 [37] Mishra BS, Singh M, Aggrawal P, et al. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One, 2009, 4: e4502 [38] 杨蓓蕾. 生长素在外源蔗糖缓解亚低温对山定子根系伤害中的生理效应. 硕士论文. 沈阳: 沈阳农业大学, 2022 [39] 李丁丁. 蔗糖、腐殖酸对平邑甜茶氮素吸收利用和分配影响研究. 硕士论文. 泰安: 山东农业大学, 2008 [40] 苏军, 张武君, 杜琳, 等. 磷胁迫下蔗糖对水稻苗期根适应性和磷酸转运蛋白基因表达的影响. 中国生态农业学报, 2014, 22(11): 1334-1340 [41] Wang ZR, Shen JB, Ludewig U, et al. A re-assessment of sucrose signaling involved in cluster-root formation and function in phosphate-deficient white lupin (Lupinus albus). Physiologia Plantarum, 2015, 154: 407-419 [42] 高菁菁. 外施葡萄糖对缓解番茄幼苗铵态氮胁迫的研究. 硕士论文. 晋中: 山西农业大学, 2021 [43] Tognetti JA, Pontis HG, Martinez-Noel GMA. Sucrose signaling in plants: A world yet to be explored. Plant Signaling & Behavior, 2013, 8: e23316 [44] Wind J, Smeekens S, Hanson J. Sucrose: Metabolite and signaling molecule. Phytochemistry, 2010, 71: 1610-1614 |