[1] 李建明, 王平, 李江. 灌溉量对亚低温下温室番茄生理生化与品质的影响. 农业工程学报, 2010, 26(2): 129-134 [Li J-M, Wang P, Li J. Effect of irrigation amount on physiology, biochemistry and fruit quality of greenhouse tomato under sub-low temperatures. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(2): 129-134] [2] 杜清洁, 代侃韧, 李建明, 等. 亚低温与干旱胁迫对番茄叶片光合及荧光动力学特性的影响. 应用生态学报, 2015, 26(6): 1687-1694 [Du Q-J, Dai K-R, Li J-M, et al. Effects of sub-low temperature and drought stress on characteristics of photosynthetic and fluorescence kinetics in tomato leaves. Chinese Journal of Applied Ecology, 2015, 26(6): 1687-1694] [3] 高欢, 吴凤芝, 周新刚, 等. 亚低温对不同品种番茄幼苗干物质积累与氮磷吸收及分配的影响. 西北农业学报, 2018, 27(7): 994-1001 [Gao H, Wu F-Z, Zhou X-G, et al. Effects of sub-low temperature on dry matter accumulation, nitrogen and phosphorus absorption and distribution in different tomato cultivars. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(7): 994-1001] [4] 李同花, 王笑, 蔡剑, 等. 不同小麦品种对干旱锻炼响应的综合评价. 麦类作物学报, 2018, 38(1): 65-73 [Li T-H, Wang X, Cai J, et al. Comprehensive evaluation of drought priming on plant tolerance in different wheat cultivars. Journal of Triticeae Crops, 2018, 38(1): 65-73] [5] 柴雨葳, 黄彩霞, 陆军胜, 等. 水分胁迫条件下低温对小麦幼苗生长发育的影响. 灌溉排水学报, 2017, 36(4): 53-58 [Chai Y-W, Huang C-X, Lu J-S, et al. Effects of low temperature on growth and development of wheat seedling under drought. Journal of Irrigation and Drainage, 2017, 36(4): 53-58] [6] 徐菲, 李建明, 吴普特, 等. 亚低温下水分对番茄幼苗干物质积累与养分吸收的影响. 中国农业科学, 2013, 46(15): 3293-3304 [Xu F, Li J-M, Wu P-T, et al. Effects of water on dry matter accumulation and nutrition absorption of tomato seedling under sub-low temperature. Scientia Agricultura Sinica, 2013, 46(15): 3293-3304] [7] Bouchabke O, Tardieu F, Simonneau T. Leaf growth and turgor in growing cells of maize (Zea mays L.) respond to evaporative demand under moderate irrigation but not in water-saturated soil. Plant, Cell and Environment, 2006, 29: 1138-1148 [8] Christmann A, Weiler EW, Steudle E, et al. A hydraulic signal in root-to-shoot signalling of water shortage. The Plant Journal, 2007, 52: 167-174 [9] Jones HG. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 2006, 58: 119-130 [10] Lawson T, Blatt MR. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 2014, 164: 1556-1570 [11] 董蕾, 李吉跃. 植物干旱胁迫下水分代谢、碳饥饿与死亡机理. 生态学报, 2013, 33(18): 5477-5483 [Dong L, Li J-Y. Relationship among drought, hydraulic metabolic, carbon starvation and vegetation mortality. Acta Ecologica Sinica, 2013, 33(18): 5477-5483] [12] Hacke UG, Sperry JS, Pockman WT, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 2001, 126: 457-461 [13] Sack L, Holbrook NM. Leaf hydraulics. Annual Review of Plant Biology, 2006, 57: 361-381 [14] 杜清洁, 李建明, 潘铜华, 等. 亚低温下干旱胁迫对番茄幼苗叶片水分及活性氧代谢的影响. 西北农林科技大学学报: 自然科学版, 2015, 43(12): 151-159 [Du Q-J, Li J-M, Pan T-H, et al. Effects of drought under sub-low temperature on water content and reactive oxygen metabolism of tomato leaves. Journal of Northwest A&F University: Natural Science, 2015, 43(12): 151-159] [15] 周碧燕, 李宇彬, 吴楚彬, 等. 低温胁迫下PP333对荔枝IAA、ABA、蒸腾速率和水势的影响. 果树学报, 2003, 20(2): 93-95 [Zhou B-Y, Li Y-B, Wu C-B, et al. Effect of PP333 on endogenous hormone and water condition of litchi in low temperature. Journal of Fruit Science, 2003, 20(2): 93-95] [16] Martre P, Morillon R, Barrieu F, et al. Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology and Biochemistry, 2002, 130: 2101-2110 [17] Weyers JDB, Lawson T. Heterogeneity in stomatal cha-racteristics. Advances in Botanical Research, 1997, 26: 317-352 [18] 李和平. 植物显微技术. 第二版. 北京: 科学出版社, 2009 [Li H-P. Plant Microscopy. 2nd Ed. Beijing: Science Press, 2009] [19] 范嘉智, 王丹, 胡亚林, 等. 最优气孔行为理论和气孔导度模拟. 植物生态学报, 2016, 40(6): 631-642 [Fan J-Z, Wang D, Hu Y-L, et al. Optimal stomatal behavior theory for simulating stomatal conductance. Chinese Journal of Plant Ecology, 2016, 40(6): 631-642] [20] Franks PJ, Beerling DJ. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 10343-10347 [21] Galmés J, Ochogavía JM, Gago J, et al. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: Anatomical adaptations in relation to gas exchange parameters. Plant, Cell and Environment, 2013, 36: 920-935 [22] 李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 2012, 36(1): 88-98 [Li Y-H, Lu Q, Wu B, et al. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 2012, 36(1): 88-98] [23] Buessis D, von Groll U, Fisahn J, et al. Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Functional Plant Biology, 2006, 33: 1037-1043 [24] Martins SCV, McAdam SAM, Deans RM, et al. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: Results from simultaneous measurements of liquid and vapour fluxes in leaves. Plant, Cell and Environment, 2016, 39: 694-705 [25] Domec JC, Noormets A, King JS, et al. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant, Cell and Environment, 2009, 32: 980-991 [26] Prado K, Maurel C. Regulation of leaf hydraulics: From molecular to whole plant levels. Frontiers in Plant Science, 2013, 4: 255 [27] Ounapuu E, Sellin A. Daily dynamics of leaf and soil-to-branch hydraulic conductance in silver birch (Betula pendula) measured in situ. Plant Physiology and Biochemistry, 2013, 68: 104-110 [28] 李吉跃, 翟洪波. 木本植物水力结构与抗旱性. 应用生态学报, 2000, 11(2): 301-305 [Li J-Y, Zhai H-B. Hydraulic architecture and drough tresistance of woody plants. Chinese Journal of Applied Ecology, 2000, 11(2): 301-305] [29] Eller CB, Barros VF, Bittencourt PRL, et al. Xylem hydraulic safety and construction costs determine tropical tree growth. Plant, Cell and Environment, 2018, 41: 548-562 [30] Yin P, Cai J. New possible mechanisms of embolism formation when measuring vulnerability curves by air injection in a pressure sleeve. Plant, Cell and Environment, 2018, 41: 1361-1368 |