应用生态学报 ›› 2024, Vol. 35 ›› Issue (11): 3190-3198.doi: 10.13287/j.1001-9332.202411.002
华喆1, 自海云1, 廖杨文科1, 唐罗忠2, 李孝刚1*
收稿日期:
2024-04-17
修回日期:
2024-08-24
出版日期:
2024-11-18
发布日期:
2025-05-18
通讯作者:
*E-mail: xgli@njfu.edu.cn
作者简介:
华 喆, 男, 2000年生, 硕士研究生。主要从事植物与微生物互作研究。E-mail: huaz@njfu.edu.cn
基金资助:
HUA Zhe1, ZI Haiyun1, LIAO Yangwenke1, TANG Luozhong2, LI Xiaogang1*
Received:
2024-04-17
Revised:
2024-08-24
Online:
2024-11-18
Published:
2025-05-18
摘要: 林木根际是根系与土壤的交界面,是由林木根系代谢物、生物及其他理化因子互作而形成的微生态系统。受林木根系活动的影响,根际微生物具有特异性群落结构和功能,对林木生长发育和土壤生态过程产生广泛而复杂的效应。近年来随着高通量测序技术的发展,林木根际微生物的促生、抗逆机制研究突破菌群培养困难的限制,在群落结构和功能以及其与林木互作机制方面的研究取得明显进展,但是在林木代谢调控根际微生物群落构建机制以及靶向性合成菌群研发方面仍有提升空间。本文总结近年来林木根际微生物研究现状,论述了根际微生物群落在调控林木生长及抗逆的功能作用,并简述了林木根际微生物的合成菌群研究,进一步探讨了生物和非生物作用对林木根际微生物的影响;最后在全球气候变化的背景下对林木根际微生物组学及菌群研究发展潜力进行展望,以期为微生物资源在森林健康和林业可持续经营中的应用提供理论支撑。
华喆, 自海云, 廖杨文科, 唐罗忠, 李孝刚. 调控林木生长的根际微生物功能过程及其影响因素研究进展[J]. 应用生态学报, 2024, 35(11): 3190-3198.
HUA Zhe, ZI Haiyun, LIAO Yangwenke, TANG Luozhong, LI Xiaogang. Research advances in functional processes and factors of rhizosphere microorganisms in regulating forest growth.[J]. Chinese Journal of Applied Ecology, 2024, 35(11): 3190-3198.
[1] Kaestner M, Miltner A, Thiele-Bruhn S, et al. Micro-bial necromass in soils-linking microbes to soil processes and carbon turnover. Frontiers in Environmental Science, 2021, 9: 756378 [2] Hartmann A, Rothballer M, Schmid M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 2008, 312: 7-14 [3] Margulis L, Fester R. Symbiosis as a Source of Evolutionary Innovation Speciation and Morphogenesis. Cambridge, Massachusetts, UK: MIT Press, 1991 [4] Zuniga A, Josefina P, Maria DR, et al. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis tha-liana by Burkholderia phytofirmans PsJN. Molecular Plant-Microbe Interactions, 2013, 26: 546-553 [5] Kong HG, Song GC, Choong-Min Ryu. Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory. Environmental Microbiology Reports, 2019, 11: 479-486 [6] Xu WF, Wang F, Zhang M, et al. Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 2019, 229: 126328 [7] Huang CM, Chen WC, Lin SH, et al. Exploration of root-associated bacteria from the medicinal plant Platy-codon grandiflorum. Microbes and Environments, 2019, 34: 413-420 [8] Philippot L, Raaijmakers JM, Lemanceau P, et al. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11: 789-799 [9] Foster KR, Schluter J, Coyte KZ, et al. The evolution of the host microbiome as an ecosystem on a leash. Nature, 2017, 548: 43 [10] Ling N, Wang TT, Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nature Communications, 2022, 13: 1-13 [11] Salas-Gonzalez I, Reyt G, Flis P, et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science, 2021, 371: 6525 [12] Trivedi P, Leach JE, Tringe SG, et al. Plant-micro-biome interactions: From community assembly to plant health. Nature Reviews Microbiology, 2020, 18: 607-621 [13] Janet KJ, Kirsten SH. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18: 35-46 [14] Cao M, Narayanan M, Shi X, et al. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environmental Research, 2023, 217: 114924 [15] Woo SL, Hermosa R, Lorito M, et al. Trichoderma: A multi-purpose, plant-beneficial microorganism for eco-sustainable agriculture. Nature Reviews Microbiology, 2023, 21: 312-326 [16] Ye X, Chen Y, Ma S, et al. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiology, 2020, 91: 103502 [17] Sun L, Cao M, Liu F, et al. The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana. Plant and Soil, 2020, 456: 207-221 [18] Wang Z, Xu GY, Ma PD, et al. Isolation and characteri-zation of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage (Brassica campestris ssp. chinensis). Frontiers in Microbiology, 2017, 8: 1270 [19] Orozco-Mosqueda MDC, Fadiji AE, Babalola OO, et al. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Micro-biological Research, 2022, 263: 127137 [20] da Silva AV, de Oliveira AJ, Tanabe ISB, et al. Antarc-tic lichens as a source of phosphate-solubilizing bacteria. Extremophiles, 2021, 25: 181-191 [21] 盛下放, 黄为一. 硅酸盐细菌NBT菌株解钾机理初探. 土壤学报, 2002, 39(6): 863-871 [22] 胡婕, 郁建平, 连宾. 黑曲霉对含钾矿物的解钾作用与机理分析. 矿物岩石地球化学通报, 2011, 30(3): 277-285 [23] Jin H, Liu J, Liu J, et al. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: A review. Science China-Life Sciences, 2012, 55: 474-482 [24] Leonor R, Marcela S, Irene M, et al. Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well equipped team to preserve plant iron homeostasis. Plant Science, 2011, 181: 582-592 [25] Enebe MC, Babalola OO. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy. Applied Microbiology Biotechnology, 2018, 102: 7821-7835 [26] Zhang YY, Hobbbie SE, Schlesinger WH, et al. Exchangeable manganese regulates carbon storage in the humus layer of the boreal forest. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121: e2318382121 [27] Qin Y, Wang J, Wang FL, et al. Purification and cha-racterization of a secretory alkaline metalloprotease with highly potent antiviral activity from Serratia marcescens Strain S3. Journal of Agricultural and Food Chemistry, 2019, 67: 3168-3178 [28] Thirkell TJ, Charters MD, Elliott AJ, et al. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology, 2017, 105: 921-929 [29] Egamberdieva D, Wirth S, Bellingrath-Kimura SD, et al. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontier in Microbiology, 2019, 10: 2791 [30] 李娇娇, 曾明. 丛枝菌根对植物根际逆境的生态学意义. 应用生态学报, 2020, 31(9): 3216-3226 [31] Mahmoudi TR, Yu JM, Liu SY, et al. Drought-stress tolerance in wheat seedlings conferred by phenazine-producing rhizobacteria. Frontiers in Microbiology, 2019, 10: 1590 [32] Vurukonda SSKP, Vardharajula S, Shrivastava M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 2016, 184: 13-24 [33] Ulrich DEM, Sevanto S, Ryan M, et al. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Scientific Reports, 2019, 9: 249 [34] Xiao Y, Zhao G, Li T, et al. Soil salinization of cultivated land in Shandong Province, China: Dynamics during the past 40 years. Land Degradation and Development, 2019, 30: 426-436 [35] Egamberdieva D, Kucharova Z. Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 2009, 45: 563-571 [36] Egamberdieva D, Wirth S, Jabborova D, et al. Coordination between Bradyrhizobium and Pseudomonas alle-viates salt stress in soybean through altering root system architecture. Journal of Plant Interactions, 2017, 12: 100-107 [37] Egamberdieva D, Wirth S, Bellingrath-Kimura SD, et al. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 2019, 10: 2791 [38] 喻其林, 赵梓润, 刘琳. 根际微生物群落功能与调控的研究进展. 微生物学杂志, 2023, 5: 1-8 [39] Bonfante P, Anca IA. Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 2009, 63: 363-383 [40] Li J, Wang C, Liang W, et al. Rhizosphere micro-biome: The emerging barrier in plant-pathogen interactions. Frontiers in Microbiology, 2021, 12: 772420 [41] Dubey A, Malla MA, Kumar A. Taxonomical and functional bacterial community profiling in disease-resistant and disease-susceptible soybean cultivars. Brazilian Journal of Microbiology, 2022, 53: 1355-1370 [42] Hacquard S, Spaepen S, Garrido-Oter R, et al. Interplay between innate immunity and the plant microbiota. Annual Review of Phytopathology, 2017, 55: 565-589 [43] Rudrappa T, Czymmek KJ, Pare PW, et al. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 2008, 148: 1547-1556 [44] Yin C, Vargas JC, Schlatter DC, et al. Rhizosphere community selection reveals bacteria associated with reduced root disease. Phytopathology, 2020, 111, DOI: 10.21203/rs.3.rs-64051/v3 [45] Li N, Han X, Feng D, et al. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: Do we understand what they are whispering? International Journal of Molecular Sciences, 2019, 20: 671 [46] Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6: 156 [47] Alvarez B, Lopez MM, Biosca EG. Biocontrol of the major plant pathogen Ralstonia solanacearum in irrigation water and host plants by novel waterborne lytic bacteriophages. Frontiers in Microbiology, 2019: 2813 [48] Wang C, Li Y, Li M, et al. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean. Journal of Integrative Plant Biology, 2021, 63: 1021-1035 [49] Yuan ZL, Druzhinina IS, Labbe J, et al. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Scientific Reports, 2016: 32467 [50] Qin Y, Druzhinina IS, Pan XY, et al. Microbially media-ted plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 2016, 34: 1245-1259 [51] Finkel OM, Salas-González I, Castrillo G, et al. A single bacterial genus maintains root growth in a complex microbiome. Nature, 2020, 587: 103-108 [52] Qu Q, Zhang Z, Peijnenburg W, et al. Rhizosphere microbiome assembly and its impact on plant growth. Journal of Agricultural and Food Chemistry, 2020, 68: 5024-5038 [53] Li C, Chen XL, Jia ZH, et al. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nature Ecology and Evolution, 2024, 8, DOI: 10.1038/s41559-024-02437-1 [54] 韦中, 杨天杰, 任鹏, 等. 合成菌群在根际免疫研究中的现状与未来. 南京农业大学学报, 2021, 44(4): 597-603 [55] Wang C, Yu QY, Ji NN, et al. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient. Nature Communications, 2023, 14: 7437 [56] Lopes LD, Hao JJ, Schachtman DP, et al. Alkaline soil pH affects bulk soil, rhizosphere and root endosphere microbiomes of plants growing in a Sandhills ecosystem. FEMS Microbiology Ecology, 2021, 97: fiab028 [57] Santos-Medellín C, Liechty Z, Edwards J, et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome. Nature Plants, 2021, 7: 1065-1077 [58] Chandra P, Dhuli P, Verma P, et al. Culturable microbial diversity in the rhizosphere of different biotypes under variable salinity. Tropical Ecology, 2020, 61: 291-300 [59] Kang J, Peng YF, Xu WF. Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. International Journal of Molecular Sciences, 2022, 23: 9310 [60] Zhalnina K, Louie KB, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3: 470-480 [61] 刘德飞, 马红武. 植物病害防治相关微生物组研究进展与展望. 生物资源, 2020, 42(1): 54-60 [62] Li Y, Li Z, Arafat Y, et al. Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. European Journal of Soil Biology, 2017, 8: 48-54 [63] 邵微, 于会丽, 张培基, 等. 不同落叶果树根际微生物群落代谢与组成的差异性研究. 果树学报, 2020, 37(9): 1371-1383 [64] 任春光, 苏文文, 潘丽珊, 等. 基于高通量测序研究猕猴桃苗不同生育期根际真菌群落结构及多样性. 土壤, 2021, 53(3): 545-554 [65] Munoz-Ucros J, Zwetsloot MJ, Cuellar-Gempeler C, et al. Spatiotemporal patterns of rhizosphere microbiome assembly: From ecological theory to agricultural application. Journal of Applied Ecology, 2021, 58: 894-904 [66] 于翠, 吕德国, 秦嗣军, 等. 本溪山樱根际微生物区系. 应用生态学报, 2007, 18(10): 2277-2281 [67] Perlman SJ, Magnus SA, Copley CR. Pervasive associations between Cybaeus spiders and the bacterial symbiont Cardinium. Journal of Invertebrate Pathology, 2010, 103: 150-155 [68] Duncker PS, Barreiro SM, Hengeveld GM, et al. Classification of forest management approaches: A new conceptual framework and its applicability to European forestry. Ecology and Society, 2012, 17: 51 [69] Wang K, Qiu Z, Zhang M, et al. Effect of afforestation mode on rhizosphere soil physicochemical properties and bacterial community structure of two major tree species in Xiong’an New Area. Forest Ecology and Management, 2022, 520: 120361 [70] 胡举伟, 朱文旭, 张会慧, 等. 桑树/大豆间作对植物生长及根际土壤微生物数量和酶活性的影响. 应用生态学报, 2013, 24(5): 1423-1427 [71] 崔佩佩, 武爱莲, 王劲松, 等. 不同施肥处理对高粱根际土壤微生物功能多样性的影响. 华北农学报, 2018, 33(5): 195-202 [72] Yang Y, Chen XL, Liu LX, et al. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. Global Change Bio-logy, 2022, 28: 6446-6461 [73] Qu XJ, Li XG, Bardgett RD, et al. Deforestation impacts soil biodiversity and ecosystem services worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121: e2318475121 [74] 彭向前. 环境因子对根际微生物的影响. 生物学教学, 2012, 37(11): 7-9 [75] Feng YZ, Zhang JW, Berdugo M, et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Global Change Biology, 2022, 28: 2779-2789 [76] Compant S, van der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 2010, 73: 197-214 [77] Ruan Y, Kuzyakov Y, Liu XY, et al. Elevated temperature and CO2 strongly affect the growth strategies of soil bacteria. Nature Communications, 2023, 391, DOI: 10.1038/s41467-023-36086-y [78] Cheng YT, Zhang L, He SY, et al. Plant-microbe inte-ractions facing environmental challenge. Cell Host and Microbe, 2019, 26: 183-192 [79] 吴昌昊, 刘敬泽. 根际微生物影响因素及其与植物互作研究进展. 河北师范大学学报: 自然科学版, 2022, 46(6): 603-613 [80] Carla de la FC, Simonin M, King E, et al. An extended root phenotype: The rhizosphere, its formation and impacts on plant fitness. The Plant Journal, 2020, 103: 951-964 |
[1] | 储薇, 王炎炎, 郭玥, 彭艳晖, 吴则焰, 林文雄. 木麻黄根际促生菌的筛选及对种子萌发和幼苗生长的影响 [J]. 应用生态学报, 2024, 35(8): 2159-2166. |
[2] | 翁凌胤, 栾冬冬, 周大朴, 郭庆港, 王光州, 张俊伶. 利用合成菌群促进作物健康: 进展与展望 [J]. 应用生态学报, 2024, 35(3): 847-857. |
[3] | 杨富玲, 石杨, 李斌, 杜志烨, 汪梦婷, 廖恒毅, 陈稷, 黄进. 植物根系分泌物在污染及沙化土壤修复中的应用现状与前景 [J]. 应用生态学报, 2021, 32(7): 2623-2632. |
[4] | 闫小莉, 贾黎明, 戴腾飞. 滴灌水氮耦合对欧美108杨林木生长和土壤氮素的影响 [J]. 应用生态学报, 2018, 29(7): 2195-2202. |
[5] | 吴亚胜, 郭世荣, 张杰, 杜南山, 孙锦. 亚精胺和丛枝菌根真菌对黄瓜生长的影响 [J]. 应用生态学报, 2018, 29(3): 891-898. |
[6] | 马志良, 赵文强, 刘美, 朱攀, 刘庆. 土壤呼吸组分对气候变暖的响应研究进展 [J]. 应用生态学报, 2018, 29(10): 3477-3486. |
[7] | 李艳娟, 刘博, 庄正, 尚天赦, 刘青青, 朱晨曦, 王正宁. 哈茨木霉与绿色木霉对杉木种子萌发和幼苗生长的影响 [J]. 应用生态学报, 2017, 28(9): 2961-2966. |
[8] | 蔡秋华1,左进香1,李忠环2,张亚萍3,赵永刚1,邓巧2,欧阳进2,黄俊杰1,喻路1,邹健1,赵正雄**. 抗性烤烟品种根际微生物数量及功能多样性差异 [J]. 应用生态学报, 2015, 26(12): 3766-3772. |
[9] | 林青,曾军,马晶,王重,张涛,李珊,娄恺. 新疆地震断裂带次生植物根际土壤微生物碳源利用 [J]. 应用生态学报, 2011, 22(09): 2297-2302. |
[10] | 白保勋,樊巍,杨海青,卞新民,赵辉. 生活污水慢渗对‘中林2001’杨树人工林生长的影响 [J]. 应用生态学报, 2011, 22(06): 1403-1408. |
[11] | 李建敏,丁维新,蔡祖聪. 氮肥对玉米生长季土壤呼吸的影响 [J]. 应用生态学报, 2010, 21(08): 2025-2030. |
[12] | 王晶1;莫菲2;段文标1;于澎涛2;熊伟2;王彦辉2;王占印2;曹恭祥3. 六盘山南坡不同密度华北落叶松水源林生长过程比较 [J]. 应用生态学报, 2009, 20(03): 500-506 . |
[13] | 董艳1;汤利1;郑毅1;朱有勇1;张福锁2. 小麦-蚕豆间作条件下氮肥施用量对根际微生物区系的影响 [J]. 应用生态学报, 2008, 19(07): 1559-1566 . |
[14] | 刘微;吕豪豪;陈英旭;吴伟祥. 稳定碳同位素技术在土壤-植物系统碳循环中的应用 [J]. 应用生态学报, 2008, 19(03): 674-680 . |
[15] | 张光灿1;刘霞1;周泽福1,2;张淑勇2;刘刚1;陈建1. 黄土丘陵区油松水土保持林生长过程与直径结构 [J]. 应用生态学报, 2007, 18(04): 728-734 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||