[1] 许驭丹, 李帅, 董世魁, 等. 气候变化背景下青藏高原东部猪毛蒿物候的变化规律和影响因素. 生态学报, 2024, 44(4): 1671-1679 [2] 付永硕, 李昕熹, 周轩成, 等. 全球变化背景下的植物物候模型研究进展与展望. 中国科学:地球科学, 2020, 50(9): 1206-1218 [3] Cai B, Cheng HM, Kang TF. Establishing the emission inventory of biogenic volatile organic compounds and quantifying their contributions to O3 and PM2.5 in the Beijing-Tianjin-Hebei region. Atmospheric Environment, 2024, 318: 120206 [4] 刘金龙, 郭华东, 张露, 等. 京津唐地区城市化对植被物候的影响研究. 遥感技术与应用, 2014, 29(2): 286-292 [5] 王敏钰, 罗毅, 张正阳, 等. 植被物候参数遥感提取与验证方法研究进展. 遥感学报, 2022, 26(3): 431-455 [6] 刘啸添, 周蕾, 石浩, 等. 基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析. 生态学报, 2018, 38(10): 3482-3494 [7] 李文梅, 覃志豪, 李文娟, 等. MODIS NDVI与MODIS EVI的比较分析. 遥感信息, 2010(6): 73-78 [8] Ma M, Zhang H, Qin JS, et al. Analysis of factors driving subtropical forest phenology differentiation, considering temperature and precipitation time-lag effects: A case study of Fujian Province. Forests, 2024, 15: 334 [9] 昝梅. 新疆天山北坡经济带主要城市群热岛效应对植被物候的影响. 生态与农村环境学报, 2022, 38(7): 872-881 [10] Ji YY, Jin JX, Zhan WF, et al. Quantification of urban heat island-induced contribution to advance in spring phenology: A case study in Hangzhou, China. Remote Sensing, 2021, 13: 3684 [11] Wang X, Du PJ, Chen DM, et al. Characterizing urbani-zation-induced land surface phenology change from time-series remotely sensed images at fine spatio-temporal scale: A case study in Nanjing, China (2001-2018). Journal of Cleaner Production, 2020, 274: 122487 [12] Tian JQ, Zhu XL, Shen ZY, et al. Investigating the urban-induced microclimate effects on winter wheat spring phenology using Sentinel-2 time series. Agricultural and Forest Meteorology, 2020, 294: 108153 [13] Ji YY, Zhan WF, Du HL, et al. Urban-rural gradient in vegetation phenology changes of over 1500 cities across China jointly regulated by urbanization and climate change. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 205: 367-384 [14] Jia WX, Zhao SQ, Zhang XY, et al. Urbanization imprint on land surface phenology: The urban-rural gradient analysis for Chinese cities. Global Change Biology, 2021, 27: 2895-2904 [15] Liu HX, Li FYH, Guo JP, et al. An improved dynamic threshold method for determining the start of the vegetation greening season in remote sensing monitoring: The case of Inner Mongolia. Ecological Informatics, 2023, 78: 102378 [16] 王彦超, 朱一丹, 徐丹丹. 基于 Landsat 8 影像的南京市热岛效应对植物物候的影响. 南京林业大学学报:自然科学版, 2018, 42(6): 99-105 [17] Yuan MX, Wang LC, Lin AW, et al. Vegetation green up under the influence of daily minimum temperature and urbanization in the Yellow River Basin, China. Ecological Indicators, 2020, 108: 105760 [18] Xie J, Li XW, Chung LCH, et al. Effects of land surface temperatures on vegetation phenology along urban-rural local climate zone gradients. Landscape Ecology, 2024, 39, DOI: 10.1007/s10980-024-01856-6 [19] Yang YK, Qiu XY, Yang LM, et al. Impacts of thermal differences in surfacing urban heat islands on vegetation phenology. Remote Sensing, 2023, 15: 5133 [20] Ahmed G, Zan M, Helili P, et al. Responses of vegetation phenology to urbanisation and natural factors along an urban-rural gradient: A case study of an urban agglomeration on the northern slope of the Tianshan Mountains. Land, 2023, 12: 1108 [21] 马冰滢, 黄姣, 李双成. 基于生态-经济权衡的京津冀城市群土地利用优化配置. 地理科学进展, 2019, 38(1): 26-37 [22] 朱国梁, 黄庆旭, 段晓宇, 等. 基于多源遥感数据的京津冀城市群城市环境动态评估. 北京师范大学学报:自然科学版, 2024, 60(3): 427-437 [23] Li Y, Hao SZ, Han Q, et al. Study on urban economic resilience of Beijing, Tianjin and Hebei based on night light remote sensing data during COVID-19. Science of Remote Sensing, 2024, 9: 100126 [24] 时凯, 闫丰, 王宗超, 等. 基于最优参数地理探测器的京津冀植被覆盖演化多元驱动力解析. 环境科学, 2024, DOI: 10.13227/j.hjkx.202403036 [25] 乔治, 陈嘉悦, 王楠, 等. SSP-RCP情景下京津冀城市群夏季热环境空间网络识别与评估. 地理与地理信息科学, 2024, 40(3): 29-36 [26] 张聪聪, 孟丹, 李小娟. 京津冀地区植被物候时空变化及其对城市化的响应. 生态学报, 2023, 43(1): 249-262 [27] Zhai HR, Yao JQ, Wang GH, et al. Impact of land use on atmospheric particulate matter concentrations: A case study of the Beijing-Tianjin-Hebei Region, China. Atmosphere, 2022, 13: 391 [28] Yu Y, Guo B, Wang C, et al. Carbon storage simulation and analysis in Beijing-Tianjin-Hebei region based on CA-plus model under dual-carbon background. Geoma-tics, Natural Hazards and Risk, 2023, 14, DOI: 10.1080/19475705.2023.2173661 [29] Wang Q, Shen SY, Li HY, et al. Resilience evaluation research on coping with rainstorm inundation under the perspective of full cycle: A case study of Beijing-Tianjin-Hebei region. Sustainable Cities and Society, 2024, 108: 105474 [30] Jönsson P, Eklundh L. TIMESAT: A program for analyzing time-series of satellite sensor data. Computers and Geosciences, 2004, 30: 833-845 [31] Gong P, Li XC, Wang J, et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 2020, 236: 111510 [32] 卜亚勤, 丁海勇. 北京植被物候时空变化及其对城市化的响应. 遥感信息, 2022, 37(2): 112-118 [33] 姚家慧, 丁海勇. 基于MODIS时序数据的北京市植被物候时空变化特征分析. 自然资源遥感, 2024, 36(2): 218-228 [34] Ma B, Wang SS, Mupenzi C, et al. Quantitative contributions of climate change and human activities to vegetation changes in the Upper White Nile River. Remote Sensing, 2021, 13: 3648 [35] 丁海勇, 卜亚勤, 徐路明. 长三角地区植被物候时空变化及其对城市化的响应. 安全与环境学报, 2021, 21(3): 1352-1360 [36] 洪辛茜, 孙涛, 陈利顶. 城市化背景下植被物候动态变化及驱动因素. 应用生态学报, 2023, 34(9): 2436-2444 [37] Liu ZC, Fu YH, Shi XR, et al. Soil moisture determines the effects of climate warming on spring phenology in grasslands. Agricultural and Forest Meteorology, 2022, 323: 109039 [38] 郭宁, 姜基春, 王国强, 等. 黄土丘陵区不同降水梯度对草地群落化学计量学特征的影响. 水土保持通报, 2020, 40(2): 1-8 [39] Tian JQ, Zhu XL, Wu J, et al. Coarse-resolution satellite images overestimate urbanization effects on vegetation spring phenology. Remote Sensing, 2020, 12: 117 [40] Zhang XY, Wang JM, Gao F, et al. Exploration of scaling effects on coarse resolution land surface phenology. Remote Sensing of Environment, 2017, 190: 318-330 [41] Fu YSH, Zhao HF, Piao SL, et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 2015, 526: 104-107 [42] 苏炜宣, 李邵, 丁小明, 等. 光温耦合对植物生长发育的影响研究进展. 中国农学通报, 2019, 35(31): 16-20 [43] 郑彦佳, 徐琳, 于瑶. 光温耦合的中国温带地区旱柳花期时空格局模拟. 生态学报, 2020, 40(17): 6147-6160 [44] Zheng QM, Teo HC, Koh LP. Artificial light at night advances spring phenology in the United States. Remote Sensing, 2021, 13: 399 [45] Xiang KL, Guo Q, Zhang BB, et al. Impact of preseason climate factors on vegetation photosynthetic phenology in mid-high latitudes of the northern hemisphere. Plants, 2024, 13: 1254 [46] Zhang M, Du HQ, Mao FJO, et al. Spatiotemporal evolution of urban expansion using Landsat time series data and assessment of its influences on forests. ISPRS International Journal of Geo-Information, 2020, 9: 64 [47] Xia J, Zhang YY, Xiong LH, et al. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Science China Earth Sciences, 2017, 60: 652-658 [48] Hu MC, Li XJ, Xu YX, et al. Remote sensing monitoring of the spatiotemporal dynamics of urban forest phenology and its response to climate and urbanization. Urban Climate, 2024, 53: 101810 |