欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (3): 780-790.doi: 10.13287/j.1001-9332.202503.012

• 研究论文 • 上一篇    下一篇

外源生长调节剂对低温胁迫下不同苗龄红海榄抗寒生理特征的影响

欧阳子龙1,2,3,4, 贾湘璐1,2,3,4, 滕维超4, 石景忠4, 刘秀1*   

  1. 1广西壮族自治区林业科学研究院, 南宁 530002;
    2南宁植物园, 南宁 530002;
    3南宁青秀山风景名胜旅游开发有限责任公司, 南宁 530004;
    4广西大学林学院, 南宁 530004
  • 收稿日期:2024-07-18 接受日期:2025-01-09 出版日期:2025-03-18 发布日期:2025-05-15
  • 通讯作者: * E-mail: xiuliu1010@126.com
  • 作者简介:欧阳子龙, 男, 1997年生, 硕士。主要从事园林植物资源与应用研究。E-mail: 1627132117@qq.com
  • 基金资助:
    广西重点研发计划项目(桂科AB24010288)、广西林业科技推广示范项目(桂科[2021]1号)和广西壮族自治区林业科学研究院团队项目(2024RT27)

Effect of exogenous growth regulators on physiological characteristics of cold resistance of Rhizophora stylosa seedling with different ages under low temperature stress

OUYANG Zilong1,2,3,4, JIA Xianglu1,2,3,4, TENG Weichao4, SHI Jingzhong4, LIU Xiu1*   

  1. 1Guangxi Forestry Research Institute, Nanning 530002, China;
    2Nanning Botanical Garden, Nanning 530002, China;
    3Nanning Qingxiu Mountain Scenic Spots Tourism Development Co., Ltd., Nanning 530004, China;
    4College of Forestry, Guangxi University, Nanning 530004, China
  • Received:2024-07-18 Accepted:2025-01-09 Online:2025-03-18 Published:2025-05-15

摘要: 低温是限制红海榄区域分布、群落生态格局和栽培产业的重要非生物胁迫因子之一。本研究以1年生和2年生红海榄幼苗为试验材料,通过步入式人工气候室模拟低温(昼10 ℃/夜5 ℃)和复温(昼30 ℃/夜20 ℃)环境,以清水为对照(CK),设置4种生长调节剂喷施处理:6-苄基嘌呤(6-BA,50、100、150 mg·L-1)、萘乙酸(NAA,50、100、150 mg·L-1)、赤霉素(GA3,100、200、400 mg·L-1)、生长素(IAA,100、200、400 mg·L-1),测定低温胁迫和复温过程中红海榄幼苗叶片抗氧化酶活性、渗透调节物质和丙二醛(MDA)含量的变化,评估了植物生长调节剂提高红海榄幼苗抗寒和恢复能力的潜力。结果表明: 低温胁迫破坏了1年生和2年生红海榄幼苗的生理稳态,使叶片MDA含量分别增加了40.0%和37.8%。施用4种生长调节剂均能显著提高1年生和2年生红海榄幼苗在低温胁迫和复温时期的抗氧化酶(超氧化物歧化酶、过氧化物酶、过氧化氢酶、抗坏血酸过氧化物酶)活性(150 mg·L-1 NAA除外)和可溶性蛋白、可溶性糖含量,并降低MDA含量。两个时期1年生幼苗MDA含量最高分别降低了35.1%和42.5%,2年生幼苗最高分别降低了37.5%和34.8%,提高了对低温逆境的抗性和恢复程度。2年生红海榄幼苗较1年生幼苗对低温环境的适应能力更强。100和200 mg·L-1 GA3、150 mg·L-1 IAA、400 mg·L-1 6-BA、50 mg·L-1 NAA在红海榄幼苗缓解低温胁迫和促进恢复的过程中均具有较好的效果。

关键词: 生长调节剂, 红海榄, 抗氧化酶, 渗透调节物质, 低温逆境, 复温, 缓解效应

Abstract: Low-temperature stress is a critical abiotic stress limiting the regional distribution, ecological community patterns, and cultivation industry of Rhizophora stylosa. To assess the role of plant growth regulators in enhancing the cold resistance and recovery of R. stylosa seedlings under low-temperature stress and rewarming conditions, we evaluated the physiological responses of 1-year and 2-year old R. stylosa seedlings to low-temperature stress (day 10 ℃/night 5 ℃) and subsequent rewarming (day 30 ℃/night 20 ℃) in a climate chamber. Seedlings were treated with four types of plant growth regulators: 6-benzylpurine (6-BA, 50, 100, and 150 mg·L-1), naphthaleneacetic acid (NAA, 50, 100, and 150 mg·L-1), gibberellin (GA3, 100, 200, and 400 mg·L-1), and auxin (IAA, 100, 200, and 400 mg·L-1), with water as the control (CK). We analyzed the changes in antioxidant enzyme activities, osmotic adjustment substances, and malondialdehyde (MDA) content in the leaves. The results showed that low-temperature stress disrupted physiological homeostasis, and increased MDA content by 40.0% and 37.8% in 1- and 2-year old seedlings, respectively. Application of growth regulators significantly enhanced the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) and the soluble protein and soluble sugar content while reduced MDA content. The maximum reduction in MDA content was 35.1% and 42.5% in 1-year-old seedlings and 37.5% and 34.8% in 2-year-old seedlings during stress and rewarming, respectively, indicating improved resistance and recovery. The 2-year-old seedlings had stronger adaptability to low-temperature compared to the 1-year-old seedlings. GA3(100 and 200 mg·L-1), IAA (150 mg·L-1), 6-BA (400 mg·L-1), and NAA (50 mg·L-1) were most effective in mitigating low-temperature stress and promoting recovery in R. stylosa seedlings. These findings offered insights to enhance the cold resistance and resilience of R. stylosa under climate-induced abiotic stress.

Key words: plant growth regulator, Rhizophora stylosa, antioxidant enzyme, osmotic regulation substance, low temperature stress, rewarming, mitigation effect