[1] Zhang YT, Ni CY, Dong YW, et al. The role of the ascorbic acid-glutathione cycle in young wheat ears' response to spring freezing stress. Plants, 2023, 12: 4170 [2] Tamrat HG. Review on factors affecting early survival of tree/shrub seedlings and its remedy in restoration sites of Ethiopia. Journal of Landscape Ecology, 2023, 16: 128-148 [3] 陈永快, 王涛, 廖水兰, 等. 逆境及生长调节剂对作物抗逆性的影响综述. 江苏农业科学, 2019, 47(23): 68-72 [4] 杨雨, 高新生, 陈艳丽, 等. 4种外源物质对低温胁迫下大肉棱丝瓜幼苗生长生理的影响. 种子, 2023, 42(5): 97-102 [5] 贾湘璐, 刘秀, 欧阳子龙, 等. 生长调节剂对红海榄幼苗生长及营养物质的影响. 广西林业科学, 2022, 51(5): 663-669 [6] 杜锦, 向春阳, 丁建文, 等. 外源SA和CaCl2对低温胁迫下糯玉米幼苗生理特性的影响. 干旱地区农业研究, 2023, 41(6): 64-71 [7] Yun JY, 韩一飞, 鄂志莹, 等. 外源独脚金内酯对陆地棉幼苗低温胁迫的缓解作用. 分子植物育种, 2023, 21(22): 7486-7499 [8] Mia M, Rejeki S, Karina K. Red mangrove (Rhizophora stylosa Griff.): A review of its botany, phytochemistry, pharmacological activities, and prospects. Plants, 2023, 12: 2196 [9] 何勇欣. 红海榄和木榄对不同环境下氮磷钾配方施肥的响应研究. 硕士论文. 三亚: 海南热带海洋学院, 2023 [10] 陈鹭真, 郑文教, 杨盛昌, 等. 红树林耐寒性和向海性生态系列对气候变化响应的研究进展. 厦门大学学报: 自然科学版, 2017, 56(3): 305-313 [11] 莫竹承. 广西红树林立地条件研究初报. 广西林业科学, 2002, 31(3): 122-127 [12] 金川. 浙江人工红树林对关键环境因子的生态响应研究. 博士论文. 北京: 北京林业大学, 2012 [13] 熊炳平, 雷泞菲, 刘金渠, 等. 低温胁迫下常春藤对外源脱落酸的生理响应. 北方园艺, 2022(3): 71-78 [14] 林霞. 无柄小叶榕发芽与生长对不同生态因子的响应研究. 博士论文. 北京: 北京林业大学, 2010 [15] 王友绍. 全球气候变化对红树林生态系统的影响、挑战与机遇. 热带海洋学报, 2021, 40(3): 1-14 [16] Yasuaki A, Tomomi I, Hajime T, et al. Photosynthesis, respiration, and growth patterns of Rhizophora stylosa seedlings in relation to growth temperature. Trees, 2019, 33: 1041-1049 [17] Andrews TJ, Muller GJ. Photosynthetic gas exchange of the mangrove, Rhizophora stylosa Griff. in its natural environment. Oecologia, 1985, 65: 449-455 [18] 李元跃, 林鹏. 中国红树植物生态解剖学研究综述. 海洋科学, 2006, 30(4): 69-73 [19] Inoue T, Akaji Y, Noguchi K. Distinct responses of growth and respiration to growth temperatures in two mangrove species. Annals of Botany, 2021, 129: 15-28 [20] Yan L, Sunoj VSJ, Short AW, et al. Correlations between allocation to foliar phosphorus fractions and maintenance of photosynthetic integrity in six mangrove populations as affected by chilling. New Phytologist, 2021, 232: 2267-2282 [21] Aidan WS, John SVS, Huang J, et al. Comparative transcriptomics of the chilling stress response in two Asian mangrove species Bruguiera gymnorhiza and Rhizophora apiculata. Tree Physiology, 2024, 44: 19 [22] Chen LZ, Wang WQ, Li QSQ, et al. Mangrove species responses to winter air temperature extremes in China. Ecosphere, 2017, 8: e01865 [23] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006 [24] Lang T, Tang YX, Tam NFY, et al. Microcosm study on cold adaptation and recovery of an exotic mangrove plant, Laguncularia racemosa in China. Marine Environmental Research, 2022, 176: 105611 [25] 许明海, 冯瑜, 童宇艳, 等. 低温胁迫对不同耐寒红树植物幼苗光合生理和抗氧化特性的影响. 林业科学研究, 2024, 37(2): 124-133 [26] Wang SM, Wang YS, Cheng H. Comparative transcriptomics and metabolomics analyses of Avicennia marina and Kandelia obovate under chilling stress during seedling period. International Journal of Molecular Sciences, 2023, 24: 16989 [27] Yang Y, Zheng CF, Zhong CR, et al. Transcriptome analysis of Sonneratia caseolaris seedlings under chilling stress. PeerJ, 2021, 9: e11506 [28] Rajput VD, Harish, Singh RK, et al. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 2021, 10: 267 [29] 张俊霞, 刘晓鹏, 向极钎. 植物抗氧化系统对逆境胁迫的动态响应. 湖北民族学院学报: 自然科学版, 2015, 33(4): 435-439 [30] 张永志, 赵首萍, 徐明飞, 等. Pb胁迫对番茄幼苗抗氧化酶系统的影响. 浙江农业科学, 2009, 1(3): 452-456 [31] 唐凤, 丁小余, 丁鸽, 等. 锗对铁皮石斛原球茎的生长及抗氧化酶系的影响. 南京师大学报: 自然科学版, 2005, 28(4): 86-89 [32] Bray RC, Cockle SA, Fielden EM, et al. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochemical Journal, 1974, 139: 43-48 [33] Dong HL, Chin BL. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays. Plant Science, 2000, 159: 75-85 [34] Wang SM, Wang YS, Su BY, et al. Ecophysiological responses of five mangrove species (Bruguiera gymnorrhiza, Rhizophora stylosa, Aegiceras corniculatum, Avicennia marina, and Kandelia obovata) to chilling stress. Frontiers in Marine Science, 2022, 9: 846566 [35] Liu X, Lu X, Yang S, et al. Role of exogenous abscisic acid in freezing tolerance of mangrove Kandelia obovata under natural frost condition at near 32°N. BMC Plant Biology, 2022, 22: 593 [36] Gao Y, Dong X, Wang RJ, et al. Exogenous calcium alleviates oxidative stress caused by salt stress in peanut seedling roots by regulating the antioxidant enzyme system and flavonoid biosynthesis. Antioxidants, 2024, 13: 233 [37] 李璇, 岳红, 王升, 等. 影响植物抗氧化酶活性的因素及其研究热点和现状. 中国中药杂志, 2013, 38(7): 973-978 [38] Alina W, Ewa M, Ewa H, et al. Evaluation of the protective role of exogenous growth regulators against Ni toxicity in woody shrub Daphne jasminea. Planta, 2018, 248: 1365-1381 [39] Coldren AG, Proffitt EC. Mangrove seedling freeze tolerance depends on salt marsh presence, species, salinity, and age. Hydrobiologia, 2017, 803: 159-171 [40] Hou JQ, Romo JT. Growth and freezing tolerance of winterfat seedlings. Journal of Range Management, 1997, 50: 165-169 [41] Li XM, Wang YT, Zhang YH, et al. Evaluating the physiological and biochemical responses of different mangrove species to upwelling. Frontiers in Marine Science, 2022, 9: 989055 [42] Wang CM, Yang YY, Chen NH, et al. Physiological and transcription analyses reveal regulatory pathways of 6-benzylaminopurine delaying leaf senescence and maintaining quality in postharvest Chinese flowering cabbage. Food Research International, 2022, 157: 111455 [43] Zhang WJ, Huang ZL, Xu KF, et al. The effect of plant growth regulators on recovery of wheat physiological and yield-related characteristics at booting period following chilling stress. Acta Physiologiae Plantarum, 2019, 41: 133 [44] 周琦锐, 赵梦停, 杨丽, 等. 外源6-BA对孕穗期低温胁迫后小麦旗叶生理、产量及品质的影响. 应用生态学报, 2024, 35(6): 1573-1582 [45] Zhou QH, Bao ZY, Yu Y, et al. IAA regulated levels of endogenous phytohormones in relation to chilling tolerance in cold-stored peaches after harvest. Postharvest Biology and Technology, 2023, 205: 112490 [46] Li XN, Jiang HD, Liu FL, et al. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regulation, 2013, 71: 31-40 |