[1] 郭仰东, 张磊, 李双桃, 等. 蔬菜作物应答非生物逆境胁迫的分子生物学研究进展. 中国农业科学, 2018, 51(6): 1167-1181 [2] 谷端银, 焦娟, 高俊杰, 等. 设施土壤硝酸盐积累及其对作物影响的研究进展. 中国蔬菜, 2017(3): 22-28 [3] 杨春武, 李长有, 张美丽, 等. 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 2008, 19(5): 1000-1005 [4] 金宁, 吕剑, 郁继华, 等. 外源硅对PEG渗透胁迫下黄瓜种子萌发及相关基因表达的影响. 园艺学报, 2020, 47(1): 41-52 [5] 徐晓昀, 郁继华, 颉建明, 等. 2,4-表油菜素内酯对亚适温弱光下黄瓜幼苗光合特性和抗氧化系统的影响. 核农学报, 2017, 31(5): 979-986 [6] Rehman S, Abbas G, Shahid M, et al. Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. Ecotoxicology & Environmental Safety, 2019, 171: 146-153 [7] Arnao MB, Hernández-Ruiz J. Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. Journal of Pineal Research, 2007, 42: 147-152 [8] 臧祎娜, 张德闪, 李海港, 等. 褪黑素调控根系生长和根际互作的机制研究进展. 植物营养与肥料学报, 2019, 25(4): 671-682 [9] 刘仕翔, 黄益宗, 罗泽娇, 等. 外源褪黑素处理对镉胁迫下水稻种子萌发的影响. 农业环境科学学报,2016, 35(6): 1034-1041 [10] 周小婷. 外源褪黑素对盐胁迫下生菜和番茄幼苗的光合作用调控机制. 博士论文. 杨凌: 西北农林科技大学, 2017 [11] Yang JY, Zheng W, Tian Y, et al. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49: 275-284 [12] Bistgani ZE, Hashemi M, DaCosta M, et al. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 2019, 135: 311-320 [13] Zhang HJ, Zhang N, Yang RC, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 2014, 57: 269-279 [14] 孙舒畅. 褪黑素在番茄镉胁迫抗性中的功能研究. 硕士论文. 杭州: 浙江大学, 2020 [15] 孟鑫, 郁继华, 颉建明, 等. 外源硅对自毒作用下黄瓜幼苗生长及光合特性的影响. 西北植物学报, 2020, 40(10): 1688-1697 [16] 杨建军, 张国斌, 郁继华, 等. 盐胁迫下内源NO对黄瓜幼苗活性氧代谢和光合特性的影响. 中国农业科学, 2017, 50(19): 3778-3788 [17] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408 [18] 杨慧杰, 原向阳, 郭平毅, 等. 油菜素内酯对阔世玛胁迫下谷子叶片光合荧光特性及糖代谢的影响. 中国农业科学, 2017, 50(13): 2508-2518 [19] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 140-142 [20] 聂文婧, 王硕硕, 荆鑫, 等. 外源表油菜素内酯对NaHCO3胁迫下黄瓜幼苗生长及氧化还原平衡的影响. 应用生态学报, 2018, 29(3): 899-908 [21] 马旭辉, 陈茹梅, 柳小庆, 等. 褪黑素对玉米幼苗根系发育和抗旱性的影响. 生物技术通报, 2021, 37(2): 1-14 [22] Zhang TG, Shi ZF, Zhang XH, et al. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae, 2020, 262: 109070 [23] Li H, Chang J, Chen H, et al. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science, 2017, 8: 295 [24] Fan HF, Ding L, Xu YL, et al. Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress in cucumber seedling lea-ves. Russian Journal of Plant Physiology, 2017, 64: 162-173 [25] 张丽平. 盐碱胁迫对黄瓜种子发芽和幼苗生理代谢的影响. 硕士论文. 泰安: 山东农业大学, 2008 [26] 徐向东, 孙艳, 郭晓芹, 等. 高温胁迫下外源褪黑素对黄瓜幼苗光合作用及叶绿素荧光的影响. 核农学报, 2011, 25(1): 179-184 [27] Cha-Um S, Supaibulwattana K, Kirdmanee C. Comparative effects of salt stress and extreme pH stress combined on glycinebetaine accumulation, photosynthetic abilities and growth characters of two rice genotypes. Rice Science, 2009, 16: 274-282 [28] Wang YF, Guo YY, Zhao CF, et al. Exogenous melatonin achieves drought tolerance by improving photosynthesis in maize seedlings leaves. Russian Journal of Plant Physiology, 2021, 68: 718-727 [29] Baker NR, Oxborough K. Chlorophyll fluorescence as a probe of photosynthetic productivity// George CP, ed. Chlorophyll a Fluorescence. Dordrecht: Springer, 2004: 65-82 [30] Yan FY, Zhang JY, Li WW, et al. Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiology and Biochemistry, 2021, 163: 367-375 [31] Andersson I, Backlund A. Structure and function of Rubisco. Plant Physiology and Biochemistry, 2008, 46: 275-291 [32] Anderson LE. Chloroplast and cytoplasmic enzymes. Ⅱ. Pea leaf triose phosphate isomerases. Biochimica et Biophysica-Enzymology, 1971, 235: 237-244 [33] 张智胜, 彭新湘. 光呼吸的功能及其平衡调控. 植物生理学报, 2016, 52(11): 1692-1702 [34] 张伟莉, 张丽光, 杨慧杰, 等. 阔世玛对谷子幼苗叶片光合特性及可溶性物质含量的影响. 核农学报, 2020, 34(6): 1294-1301 [35] 翟江, 高原, 张晓伟, 等. 硅钙对日光温室黄瓜光合作用及产量和品质的影响. 园艺学报, 2019, 46(4): 701-713 [36] 李翔, 桑勤勤, 束胜, 等. 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响. 园艺学报, 2016, 43(10): 2012-2020 [37] Gibson SI. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiology, 2000, 124: 1532-1539 [38] Xin J, Ma S, Zhao C, et al. Cadmium phytotoxicity, related physiological changes in Pontederia cordata: Antioxidative, osmoregulatory substances, phytochelatins, photosynthesis, and chlorophyll fluorescence. Environmental Science and Pollution Research, 2020, 27: 41596-41608 [39] Ren JH, Ye J, Yin LL, et al. Exogenous melatonin improves salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. Agronomy, 2020, 10: 663 [40] 张俊康, 马丽, 吴姝青, 等. 外源褪黑素对软枣猕猴桃低温伤害的缓解效应. 植物生理学报, 2020, 56(5): 1081-1087 |