[1] 于贵瑞, 陈智, 杨萌, 等. 大尺度陆地生态系统科学研究的理论基础及其技术体系之探讨. 应用生态学报, 2021, 32(2): 377-391 [2] 于贵瑞, 王秋凤, 杨萌, 等. 生态学的科学概念及其演变与当代生态学学科体系之商榷. 应用生态学报, 2021, 32(1): 1-15 [3] 于贵瑞, 任小丽, 杨萌, 等. 宏观生态系统科学整合研究的多学科知识融合及其技术途径. 应用生态学报, 2021, 32(9): 3031-3044 [4] Legendre P, Legendre L. Numerical Ecology. Amsterdam, Netherland: Elsevier, 2012 [5] 吕一河, 傅伯杰. 生态学中的尺度及尺度转换方法. 生态学报, 2001, 21(12): 2096-2105 [6] 于贵瑞, 陈智, 张维康, 等. 试论宏观生态系统科学研究的多学科维度基本问题及其方法体系. 应用生态学报, 2021, 32(5): 1531-1544 [7] Legendre P, Legendre L. Chapter 3-Dimensional analysis in ecology//Legendre P, Legendre L. Developments in Environmental Modelling. Amsterdam, Netherland: Elsevier, 2012: 109-142 [8] 于贵瑞, 王永生, 杨萌. 提升生态系统质量和稳定性的生态学原理及技术途径之探讨. 应用生态学报, 2023, 34(1): 1-10 [9] 于贵瑞, 郝天象, 杨萌. 中国区域生态恢复和环境治理的生态系统原理及若干学术问题. 应用生态学报, 2023, 34(2): 289-304 [10] McIntyre S, Lavorel S, Landsberg J, et al. Disturbance response in vegetation: Towards a global perspective on functional traits. Journal of Vegetation Science, 1999, 10: 621-630 [11] Cornelissen JH, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51: 335-380 [12] Díaz S, Cabido M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends in Eco-logy & Evolution, 2001, 16: 646-655 [13] 何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 2018, 38(19): 6787-6796 [14] He NP, Liu CC, Piao SL, et al. Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 2019, 34: 200-210 [15] Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 13730-13734 [16] 中国国家标准化管理委员会. GB/T 17296—2009 中国土壤分类与代码. 北京: 中国标准出版社, 2009 [17] Blackburn TM, Gaston KJ. Scale in macroecology. Glo-bal Ecology and Biogeography, 2002, 11: 185-189 [18] Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827 [19] Ivkovic' M, Wu H, Kumar S. Bio-economic modelling as a method for determining economic weights for optimal multiple-trait tree selection. Silvae Genetica, 2010, 59: 77-90 [20] Mitra J. Genetics and genetic improvement of drought resistance in crop plants. Current Science, 2001, 80: 758-763 [21] Schaal BA, Olsen KM. Gene genealogies and population variation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 7024-7029 [22] Odum HT. Energy, Ecology, and Economics. Ambio, 1973, 2: 220-227 [23] Chapin Ⅲ FS, Power ME, Pickett STA, et al. Earth stewardship: Science for action to sustain the human-earth system. Ecosphere, 2011, 2: art89 [24] Violle C, Navas ML, Vile D, et al. Let the concept of trait be functional! Oikos, 2007, 116: 882-892 [25] Grace JB, Anderson TM, Seabloom EW, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529: 390-393 [26] Krivtsov V. Investigations of indirect relationships in ecology and environmental sciences: A review and the implications for comparative theoretical ecosystem analysis. Ecological Modelling, 2004, 174: 37-54 [27] Eisenhauer N, Hines J, Isbell F, et al. Plant diversity maintains multiple soil functions in future environments. eLife, 2018, 7: e41228. [28] Croft H, Chen JM, Luo X, et al. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology, 2017, 23: 3513-3524 [29] 于贵瑞, 张黎, 何洪林, 等. 大尺度陆地生态系统动态变化与空间变异的过程模型及模拟系统. 应用生态学报, 2021, 32(8): 2653-2665 |