[1] Gentine P, Green JK, Guérin M, et al. Coupling between the terrestrial carbon and water cycles: A review. Environmental Research Letters, 2019, 14: 083003 [2] Chen YP, Wang KB, Lin YS, et al. Balancing green and grain trade. Nature Geoscience, 2015, 8: 739-741 [3] Yao YT, Wang XH, Zeng ZZ, et al. The effect of afforestation on soil moisture content in northeastern China. PLoS One, 2016, 11(8): e0160776 [4] 傅伯杰. 黄土高原土地利用变化的生态环境效应. 科学通报, 2022, 67(32): 3769-3779 [5] Schwärzel K, Zhang LL, Montanarella L, et al. How afforestation affects the water cycle in drylands: A process-based comparative analysis. Global Change Bio-logy, 2020, 26: 944-959 [6] Zhao DY, Bi HX, Wang N, et al. Does increasing forest age lead to greater trade-offs in ecosystem services? A study of a Robinia pseudoacacia artificial forest on the Loess Plateau, China. Science of the Total Environment, 2024, 926: 171737 [7] 兰洁, 雷相东, 何潇, 等. 吉林省天然阔叶混交林生态系统多功能性及驱动因素. 生态学报, 2021, 41(13): 5128-5141 [8] Lu N, Fu BJ, Jin TT, et al. Trade-off analyses of multiple ecosystem services by plantations along a precipita-tion gradient across Loess Plateau landscapes. Landscape Ecology, 2014, 29: 1697-1708 [9] Mi N, Wang SQ, Liu JY, et al. Soil inorganic carbon storage pattern in China. Global Change Biology, 2008, 14: 2380-2387 [10] 杨黎芳, 李贵桐, 赵小蓉, 等. 栗钙土不同土地利用方式下有机碳和无机碳剖面分布特征. 生态环境, 2007, 16(1): 158-162 [11] Yang X, Li TC, Shao MN. Factors controlling deep-profile soil organic carbon and water storage following Ro-binia pseudoacacia afforestation of the Loess Plateau in China. Forest Ecosystems, 2022, 9: 100079 [12] 王宁, 毕华兴, 孔凌霄, 等. 晋西黄土区不同密度刺槐林地土壤水分补偿特征. 水土保持学报, 2019, 33(4): 255-262 [13] 云慧雅, 毕华兴, 焦振寰, 等. 晋西黄土区不同林分类型和密度条件下林下灌草组成及多样性特征. 浙江农林大学学报, 2023, 40(3): 569-578 [14] 孙蕾, 王磊, 蔡冰, 等. 土壤水分测定方法简介. 中国西部科技, 2014, 13(11): 54-55 [15] 中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978: 511-514 [16] 吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望. 土壤, 2015, 47(3): 453-460 [17] 李博文, 刘高辉, 袁健, 等. 气量法与差减法测定岩石中碳酸盐含量的对比研究. 世界核地质科学, 2024, 41(1): 82-87 [18] Li SY, Tang ZY, Zhang A, et al. Trade-offs and synergies between plant species diversity and water retention capacity of Pinus massoniana plantation community in Danjiangkou Reservoir Area. Forests, 2022, 13: 2081 [19] 朱俊. 系统耦合协同评价模型的改进及其应用. 统计与决策, 2023, 39(11): 25-31 [20] 邓蕾, 刘玉林, 李继伟, 等. 植被恢复的土壤固碳效应: 动态与驱动机制. 水土保持学报, 2023, 37(2): 1-10 [21] Wei XR, Qiu LP, Shao MA, et al. The accumulation of organic carbon in mineral soils by afforestation of abandoned farmland. PLoS One, 2012, 7(3): e32054 [22] Zhang YH, Xu XL, Li ZW, et al. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment, 2019, 650: 2657-2665 [23] 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56(3): 528-540 [24] Liu JB, Wu PX, Zhao Z, et al. Afforestation on cropland promotes pedogenic inorganic carbon accumulation in deep soil layers on the Chinese loess plateau. Plant and Soil, 2022, 478: 597-612 [25] Han XY, Gao GY, Chang RY, et al. Changes in soil organic and inorganic carbon stocks in deep profiles following cropland abandonment along a precipitation gradient across the Loess Plateau of China. Agriculture, Ecosystems & Environment, 2018, 258: 1-13 [26] Zamanian K, Zarebanadkouki M, Kuzyakov Y. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology, 2018, 24: 2810-2817 [27] Zamanian K, Pustovoytov K, Kuzyakov Y. Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 2016, 157: 1-17 [28] 兰志龙, 赵英, 张建国, 等. 陕北黄土丘陵区不同土地利用方式下土壤碳剖面分布特征. 环境科学, 2018, 39(1): 339-347 [29] 常译方, 毕华兴, 许华森, 等. 晋西黄土区不同密度刺槐林对土壤水分的影响. 水土保持学报, 2015, 29(6): 227-232 [30] Zhao M, Liu SH, Sun YR, et al. Does stand density affect understory vegetation and soil properties of differently aged Robinia pseudoacacia plantations? Forest Ecology and Management, 2023, 548: 121444 [31] Jonsson JA, Sigurdsson BD. Effects of early thinning and fertilization on soil temperature and soil respiration in a poplar plantation. Icelandic Agricultural Science, 2010, 23: 97-109 [32] Lan ZL, Zhao Y, Zhang JG, et al. Long-term vegetation restoration increases deep soil carbon storage in the Northern Loess Plateau. Scientific Reports, 2021, 11: 13758 [33] Li XJ, Yang TH, Hicks LC, et al. Climate and soil properties drive soil organic and inorganic carbon patterns across a latitudinal gradient in southwestern China. Journal of Soils and Sediments, 2023, 23: 91-102 [34] 王百田, 王颖, 郭江红, 等. 黄土高原半干旱地区刺槐人工林密度与地上生物量效应. 中国水土保持科学, 2005, 3(3): 35-39 [35] 王世军, 杨磊, 段兴武, 等. 黄土高原小流域植被恢复的土壤水分和养分权衡效应研究. 土壤通报, 2022, 53(2): 356-365 [36] 梁潇瑜, 信忠保, 刘山宝, 等. 河北坝上地区植被恢复的土壤碳水效应. 水土保持学报, 2022, 36(6): 206-212 [37] Chen YM, Cao Y. Response of tree regeneration and understory plant species diversity to stand density in mature Pinus tabuliformis plantations in the hilly area of the Loess Plateau, China. Ecological Engineering, 2014, 73: 238-245 [38] Zeng WX, Xiang WH, Zhou B, et al. Effects of tree species richness on fine root production varied with stand density and soil nutrients in subtropical forests. Science of the Total Environment, 2020, 733: 139344 [39] 刘新春, 赵勇钢, 刘小芳, 等. 晋西黄土区人工林细根与土壤水碳的耦合关系. 生态学报, 2019, 39(21): 7987-7995 [40] Li RF, Wang YP, Ji WJ, et al. Water deficit limits soil organic carbon sequestration under old apple orchards in the loess-covered region. Agriculture, Ecosystems & Environment, 2024, 359: 108739 |